Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioimpacts ; 12(6): 515-531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36644541

RESUMO

Introduction: Paclitaxel (PTX) is a cornerstone in the treatment of breast cancer, the most common type of cancer in women. However, this drug has serious limitations, including lack of tissue-specificity, poor water solubility, and the development of drug resistance. The transport of PTX in a polymeric nanoformulation could overcome these limitations. Methods: In this study, PLGA-PTX nanoparticles (NPs) were assayed in breast cancer cell lines, breast cancer stem cells (CSCs) and multicellular tumor spheroids (MTSs) analyzing cell cycle, cell uptake (Nile Red-NR-) and α-tubulin expression. In addition, PLGA-PTX NPs were tested in vivo using C57BL/6 mice, including a biodistribution assay. Results: PTX-PLGA NPs induced a significant decrease in the PTX IC50 of cancer cell lines (1.31 and 3.03-fold reduction in MDA-MB-231 and E0771 cells, respectively) and CSCs. In addition, MTSs treated with PTX-PLGA exhibited a more disorganized surface and significantly higher cell death rates compared to free PTX (27.9% and 16.3% less in MTSs from MCF-7 and E0771, respectively). PTX-PLGA nanoformulation preserved PTX's mechanism of action and increased its cell internalization. Interestingly, PTX-PLGA NPs not only reduced the tumor volume of treated mice but also increased the antineoplastic drug accumulation in their lungs, liver, and spleen. In addition, mice treated with PTX-loaded NPs showed blood parameters similar to the control mice, in contrast with free PTX. Conclusion: These results suggest that our PTX-PLGA NPs could be a suitable strategy for breast cancer therapy, improving antitumor drug efficiency and reducing systemic toxicity without altering its mechanism of action.

2.
Pharmacol Res ; 141: 451-465, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30634051

RESUMO

Paclitaxel (PTX), a chemotherapy agent widely used to treat lung cancer, is characterised by high toxicity, low bioavailability and the need to use of excipients with serious side effects that limit its use. Paclitaxel encapsulation into nanoparticles (NPs) generates drug pharmacokinetic and pharmacodynamic advantages compared to free PTX. In this context, a NP carrier formed from a copolymer of lactic acid and glycolic acid (PLGA) has demonstrated high biocompatibility and low toxicity and therefore being approved by FDA to be used in humans. We synthesised a new PLGA NP and loaded it with PTX to improve drug efficacy and reduce side effects. This nanoformulation showed biocompatibility and no toxicity to human immune system. These NPs favor the intracellular uptake of PTX and enhance its antitumor effect in human and murine lung cancer cells, with up to 3.6-fold reductions in the PTX's IC50. Although PLGA NPs did not show any inhibitory capacity against P-glycoprotein, they increased the antitumor activity of PTX in cancer stem cells. Treatment with PLGA-PTX NPs increased apoptosis and significantly reduced the volume of the tumorspheres derived from A549 and LL2 cells by up to 36% and 46.5%, respectively. Biodistribution studies with PLGA-PTX NPs revealed an increase in drug circulation time, as well as a greater accumulation in lung and brain tissues compared to free PTX. Low levels of PTX were detected in the dorsal root ganglion with PLGA-PTX NPs, which could exert a protective effect against peripheral neuropathy. In vivo treatment with PLGA-PTX NPs showed a greater decrease in tumor volume (44.6%) in immunocompetent mice compared to free PTX (24.4%) and without increasing the toxicity of the drug. These promising results suggest that developed nanosystem provide a potential strategy for improving the chemotherapeutic effect and reducing the side effects of PTX.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Portadores de Fármacos/química , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células A549 , Animais , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA