Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(7): 1067-1080, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37322127

RESUMO

Symbiotic interactions such as the nitrogen-fixing root nodule symbiosis (RNS) have structured ecosystems during the evolution of life. Here we aimed at reconstructing ancestral and intermediate steps that shaped RNS observed in extant flowering plants. We compared the symbiotic transcriptomic responses of nine host plants, including the mimosoid legume Mimosa pudica for which we assembled a chromosome-level genome. We reconstructed the ancestral RNS transcriptome composed of most known symbiotic genes together with hundreds of novel candidates. Cross-referencing with transcriptomic data in response to experimentally evolved bacterial strains with gradual symbiotic proficiencies, we found the response to bacterial signals, nodule infection, nodule organogenesis and nitrogen fixation to be ancestral. By contrast, the release of symbiosomes was associated with recently evolved genes encoding small proteins in each lineage. We demonstrate that the symbiotic response was mostly in place in the most recent common ancestor of the RNS-forming species more than 90 million years ago.


Assuntos
Fabaceae , Simbiose , Simbiose/fisiologia , Ecossistema , Fixação de Nitrogênio/genética , Bactérias
2.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37186547

RESUMO

During the emergence of new host-microbe symbioses, microbial fitness results from the ability to complete the different steps of symbiotic life cycles, where each step imposes specific selective pressures. However, the relative contribution of these different selective pressures to the adaptive trajectories of microbial symbionts is still poorly known. Here, we characterized the dynamics of phenotypic adaptation to a simplified symbiotic life cycle during the experimental evolution of a plant pathogenic bacterium into a legume symbiont. We observed that fast adaptation was predominantly explained by improved competitiveness for host entry, which outweighed adaptation to within-host proliferation. Whole-population sequencing of bacteria at regular time intervals along this evolution experiment revealed the continuous accumulation of new mutations (fuelled by a transient hypermutagenesis phase occurring at each cycle before host entry, a phenomenon described in previous work) and sequential sweeps of cohorts of mutations with similar temporal trajectories. The identification of adaptive mutations within the fixed mutational cohorts showed that several adaptive mutations can co-occur in the same cohort. Moreover, all adaptive mutations improved competitiveness for host entry, while only a subset of those also improved within-host proliferation. Computer simulations predict that this effect emerges from the presence of a strong selective bottleneck at host entry occurring before within-host proliferation and just after the hypermutagenesis phase in the rhizosphere. Together, these results show how selective bottlenecks can alter the relative influence of selective pressures acting during bacterial adaptation to multistep infection processes.


Assuntos
Fabaceae , Fabaceae/genética , Bactérias/genética , Adaptação Fisiológica , Mutação , Aclimatação , Simbiose/genética
3.
Plant Cell Environ ; 45(10): 3100-3121, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781677

RESUMO

Senescence determines plant organ lifespan depending on aging and environmental cues. During the endosymbiotic interaction with rhizobia, legume plants develop a specific organ, the root nodule, which houses nitrogen (N)-fixing bacteria. Unlike earlier processes of the legume-rhizobium interaction (nodule formation, N fixation), mechanisms controlling nodule senescence remain poorly understood. To identify nodule senescence-associated genes, we performed a dual plant-bacteria RNA sequencing approach on Medicago truncatula-Sinorhizobium meliloti nodules having initiated senescence either naturally (aging) or following an environmental trigger (nitrate treatment or salt stress). The resulting data allowed the identification of hundreds of plant and bacterial genes differentially regulated during nodule senescence, thus providing an unprecedented comprehensive resource of new candidate genes associated with this process. Remarkably, several plant and bacterial genes related to the cell cycle and stress responses were regulated in senescent nodules, including the rhizobial RpoE2-dependent general stress response. Analysis of selected core nodule senescence plant genes allowed showing that MtNAC969 and MtS40, both homologous to leaf senescence-associated genes, negatively regulate the transition between N fixation and senescence. In contrast, overexpression of a gene involved in the biosynthesis of cytokinins, well-known negative regulators of leaf senescence, may promote the transition from N fixation to senescence in nodules.


Assuntos
Medicago truncatula , Rhizobium , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , Rhizobium/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Transcriptoma/genética
4.
Mol Plant Pathol ; 21(10): 1257-1270, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33245626

RESUMO

Pathogens deploy effector proteins that interact with host proteins to manipulate the host physiology to the pathogen's own benefit. However, effectors can also be recognized by host immune proteins, leading to the activation of defence responses. Effectors are thus essential components in determining the outcome of plant-pathogen interactions. Despite major efforts to decipher effector functions, our current knowledge on effector biology is scattered and often limited. In this study, we conducted two systematic large-scale yeast two-hybrid screenings to detect interactions between Arabidopsis thaliana proteins and effectors from two vascular bacterial pathogens: Ralstonia pseudosolanacearum and Xanthomonas campestris. We then constructed an interactomic network focused on Arabidopsis and effector proteins from a wide variety of bacterial, oomycete, fungal, and invertebrate pathogens. This network contains our experimental data and protein-protein interactions from 2,035 peer-reviewed publications (48,200 Arabidopsis-Arabidopsis and 1,300 Arabidopsis-effector protein interactions). Our results show that effectors from different species interact with both common and specific Arabidopsis interactors, suggesting dual roles as modulators of generic and adaptive host processes. Network analyses revealed that effector interactors, particularly "effector hubs" and bacterial core effector interactors, occupy important positions for network organization, as shown by their larger number of protein interactions and centrality. These interactomic data were incorporated in EffectorK, a new graph-oriented knowledge database that allows users to navigate the network, search for homology, or find possible paths between host and/or effector proteins. EffectorK is available at www.effectork.org and allows users to submit their own interactomic data.


Assuntos
Arabidopsis , Bases de Dados de Compostos Químicos , Resistência à Doença , Mapas de Interação de Proteínas , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Resistência à Doença/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Proteoma/metabolismo , Ralstonia/metabolismo , Software , Fatores de Virulência/metabolismo , Xanthomonas/metabolismo , Xanthomonas campestris/metabolismo
5.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33067191

RESUMO

Rhizobia are bacteria which can either live as free organisms in the soil or interact with plants of the legume family with, as a result, the formation of root organs called nodules in which differentiated endosymbiotic bacteria fix atmospheric nitrogen to the plant's benefit. In both lifestyles, rhizobia are exposed to nitric oxide (NO) which can be perceived as a signaling or toxic molecule. NO can act at the transcriptional level but can also modify proteins by S-nitrosylation of cysteine or nitration of tyrosine residues. However, only a few molecular targets of NO have been described in bacteria and none of them have been characterized in rhizobia. Here, we examined tyrosine nitration of Sinorhizobium meliloti proteins induced by NO. We found three tyrosine-nitrated proteins in S. meliloti grown under free-living conditions, in response to an NO donor. Two nitroproteins were identified by mass spectrometry and correspond to flagellins A and B. We showed that one of the nitratable tyrosines is essential to flagellin function in motility.IMPORTANCE Rhizobia are found as free-living bacteria in the soil or in interaction with plants and are exposed to nitric oxide (NO) in both environments. NO is known to have many effects on animals, plants, and bacteria where only a few molecular targets of NO have been described so far. We identified flagellin A and B by mass spectrometry as tyrosine-nitrated proteins in Sinorhizobium melilotiin vivo We also showed that one of the nitratable tyrosines is essential to flagellin function in motility. The results enhanced our understanding of NO effects on rhizobia. Identification of bacterial flagellin nitration opens a new possible role of NO in plant-microbe interactions.


Assuntos
Flagelina/metabolismo , Estresse Nitrosativo , Sinorhizobium meliloti/metabolismo , Tirosina/metabolismo , Óxido Nítrico/metabolismo
6.
Mol Plant Pathol ; 19(1): 129-142, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27768829

RESUMO

The subversion of plant cellular functions is essential for bacterial pathogens to proliferate in host plants and cause disease. Most bacterial plant pathogens employ a type III secretion system to inject type III effector (T3E) proteins inside plant cells, where they contribute to the pathogen-induced alteration of plant physiology. In this work, we found that the Ralstonia solanacearum T3E RipAY suppresses plant immune responses triggered by bacterial elicitors and by the phytohormone salicylic acid. Further biochemical analysis indicated that RipAY associates in planta with thioredoxins from Nicotiana benthamiana and Arabidopsis. Interestingly, RipAY displays γ-glutamyl cyclotransferase (GGCT) activity to degrade glutathione in plant cells, which is required for the reported suppression of immune responses. Given the importance of thioredoxins and glutathione as major redox regulators in eukaryotic cells, RipAY activity may constitute a novel and powerful virulence strategy employed by R. solanacearum to suppress immune responses and potentially alter general redox signalling in host cells.


Assuntos
Arabidopsis/imunologia , Proteínas de Bactérias/metabolismo , Nicotiana/imunologia , Imunidade Vegetal , Ralstonia solanacearum/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Arabidopsis/microbiologia , Núcleo Celular/metabolismo , Cisteína/metabolismo , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Oxirredução , Células Vegetais/metabolismo , Ralstonia solanacearum/patogenicidade , Tiorredoxinas/metabolismo , Nicotiana/citologia , Nicotiana/microbiologia , Virulência , gama-Glutamilciclotransferase/metabolismo
7.
Sci Rep ; 7(1): 4879, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687734

RESUMO

Plant pathogenic bacteria exerts their pathogenicity through the injection of large repertoires of type III effectors (T3Es) into plant cells, a mechanism controlled in part by type III chaperones (T3Cs). In Ralstonia solanacearum, the causal agent of bacterial wilt, little is known about the control of type III secretion at the post-translational level. Here, we provide evidence that the HpaB and HpaD proteins do act as bona fide R. solanacearum class IB chaperones that associate with several T3Es. Both proteins can dimerize but do not interact with each other. After screening 38 T3Es for direct interactions, we highlighted specific and common interacting partners, thus revealing the first picture of the R. solanacearum T3C-T3E network. We demonstrated that the function of HpaB is conserved in two phytopathogenic bacteria, R. solanacearum and Xanthomonas campestris pv. vesicatoria (Xcv). HpaB from Xcv is able to functionally complement a R. solanacearum hpaB mutant for hypersensitive response elicitation on tobacco plants. Likewise, Xcv is able to translocate a heterologous T3E from R. solanacearum in an HpaB-dependent manner. This study underlines the central role of the HpaB class IB chaperone family and its potential contribution to the bacterial plasticity to acquire and deliver new virulence factors.


Assuntos
Chaperonas Moleculares/metabolismo , Ralstonia solanacearum/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo , Xanthomonas campestris/metabolismo , Solanum lycopersicum/microbiologia , Chaperonas Moleculares/química , Doenças das Plantas/microbiologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Multimerização Proteica , Transporte Proteico
8.
Mol Cell Proteomics ; 15(2): 598-613, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26637540

RESUMO

Ralstonia solanacearum, the causal agent of bacterial wilt, exerts its pathogenicity through more than a hundred secreted proteins, many of them depending directly on the functionality of a type 3 secretion system. To date, only few type 3 effectors have been identified as required for bacterial pathogenicity, notably because of redundancy among the large R. solanacearum effector repertoire. In order to identify groups of effectors collectively promoting disease on susceptible hosts, we investigated the role of putative post-translational regulators in the control of type 3 secretion. A shotgun secretome analysis with label-free quantification using tandem mass spectrometry was performed on the R. solanacearum GMI1000 strain. There were 228 proteins identified, among which a large proportion of type 3 effectors, called Rip (Ralstonia injected proteins). Thanks to this proteomic approach, RipBJ was identified as a new effector specifically secreted through type 3 secretion system and translocated into plant cells. A focused Rip secretome analysis using hpa (hypersensitive response and pathogenicity associated) mutants revealed a fine secretion regulation and specific subsets of Rips with different secretion patterns. We showed that a set of Rips (RipF1, RipW, RipX, RipAB, and RipAM) are secreted in an Hpa-independent manner. We hypothesize that these Rips could be preferentially involved in the first stages of type 3 secretion. In addition, the secretion of about thirty other Rips is controlled by HpaB and HpaG. HpaB, a candidate chaperone was shown to positively control secretion of numerous Rips, whereas HpaG was shown to act as a negative regulator of secretion. To evaluate the impact of altered type 3 effectors secretion on plant pathogenesis, the hpa mutants were assayed on several host plants. HpaB was required for bacterial pathogenicity on multiple hosts whereas HpaG was found to be specifically required for full R. solanacearum pathogenicity on the legume plant Medicago truncatula.


Assuntos
Proteínas de Bactérias/genética , Doenças das Plantas/microbiologia , Proteômica , Ralstonia solanacearum/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/genética , Mutação , Doenças das Plantas/genética , Plantas/microbiologia , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/patogenicidade
9.
Mol Plant Pathol ; 15(6): 601-14, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24405562

RESUMO

Many pathogenic bacteria have evolved a type III secretion system (T3SS) to successfully invade their host. This extracellular apparatus allows the translocation of proteins, called type III effectors (T3Es), directly into the host cells. T3Es are virulence factors that have been shown to interfere with the host's immunity or to provide nutrients from the host to the bacteria. The Gram-negative bacterium Ralstonia solanacearum is a worldwide major crop pest whose virulence strongly relies on the T3SS. In R. solanacearum, transcriptional regulation has been extensively studied. However, very few data are available concerning the role played by type III-associated regulators, such as type III chaperones and T3SS control proteins. Here, we characterized HpaP, a putative type III secretion substrate specificity switch (T3S4) protein of R. solanacearum which is not secreted by the bacterium or translocated in the plant cells. HpaP self-interacts and interacts with the PopP1 T3E. HpaP modulates the secretion of early (HrpY pilin) and late (AvrA and PopP1 T3Es) type III substrates. HpaP is dispensable for the translocation of T3Es into the host cells. Finally, we identified two regions of five amino acids in the T3S4 domain that are essential for efficient PopP1 secretion and for HpaP's role in virulence on tomato and Arabidopsis thaliana, but not required for HpaP-HpaP and HpaP-PopP1 interactions. Taken together, our results indicate that HpaP is a putative R. solanacearum T3S4 protein important for full pathogenicity on several hosts, acting as a helper for PopP1 secretion, and repressing AvrA and HrpY secretion.


Assuntos
Proteínas de Bactérias/fisiologia , Ralstonia solanacearum/fisiologia , Ralstonia solanacearum/patogenicidade , Sequência de Aminoácidos , Arabidopsis/microbiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Genes Bacterianos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Solanum lycopersicum/microbiologia , Dados de Sequência Molecular , Mutação , Filogenia , Estrutura Terciária de Proteína , Ralstonia solanacearum/genética , Homologia de Sequência de Aminoácidos , Virulência/genética , Virulência/fisiologia
10.
BMC Genomics ; 14: 859, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24314259

RESUMO

BACKGROUND: Ralstonia solanacearum is a soil-borne beta-proteobacterium that causes bacterial wilt disease in many food crops and is a major problem for agriculture in intertropical regions. R. solanacearum is a heterogeneous species, both phenotypically and genetically, and is considered as a species complex. Pathogenicity of R. solanacearum relies on the Type III secretion system that injects Type III effector (T3E) proteins into plant cells. T3E collectively perturb host cell processes and modulate plant immunity to enable bacterial infection. RESULTS: We provide the catalogue of T3E in the R. solanacearum species complex, as well as candidates in newly sequenced strains. 94 T3E orthologous groups were defined on phylogenetic bases and ordered using a uniform nomenclature. This curated T3E catalog is available on a public website and a bioinformatic pipeline has been designed to rapidly predict T3E genes in newly sequenced strains. Systematical analyses were performed to detect lateral T3E gene transfer events and identify T3E genes under positive selection. Our analyses also pinpoint the RipF translocon proteins as major discriminating determinants among the phylogenetic lineages. CONCLUSIONS: Establishment of T3E repertoires in strains representatives of the R. solanacearum biodiversity allowed determining a set of 22 T3E present in all the strains but provided no clues on host specificity determinants. The definition of a standardized nomenclature and the optimization of predictive tools will pave the way to understanding how variation of these repertoires is correlated to the diversification of this species complex and how they contribute to the different strain pathotypes.


Assuntos
Proteínas de Bactérias/genética , Evolução Molecular , Ralstonia solanacearum/genética , Terminologia como Assunto , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Bases de Dados Genéticas , Ordem dos Genes , Transferência Genética Horizontal , Genômica , Fases de Leitura Aberta , Filogenia , Ralstonia solanacearum/classificação , Recombinação Genética , Seleção Genética
11.
Plant Physiol ; 161(1): 508-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23151348

RESUMO

In addition to the linear electron flow, a cyclic electron flow (CEF) around photosystem I occurs in chloroplasts. In CEF, electrons flow back from the donor site of photosystem I to the plastoquinone pool via two main routes: one that involves the Proton Gradient Regulation5 (PGR5)/PGRL1 complex (PGR) and one that is dependent of the NADH dehydrogenase-like complex. While the importance of CEF in photosynthesis and photoprotection has been clearly established, little is known about its regulation. We worked on the assumption of a redox regulation and surveyed the putative role of chloroplastic thioredoxins (TRX). Using Arabidopsis (Arabidopsis thaliana) mutants lacking different TRX isoforms, we demonstrated in vivo that TRXm4 specifically plays a role in the down-regulation of the NADH dehydrogenase-like complex-dependent plastoquinone reduction pathway. This result was confirmed in tobacco (Nicotiana tabacum) plants overexpressing the TRXm4 orthologous gene. In vitro assays performed with isolated chloroplasts and purified TRXm4 indicated that TRXm4 negatively controls the PGR pathway as well. The physiological significance of this regulation was investigated under steady-state photosynthesis and in the pgr5 mutant background. Lack of TRXm4 reversed the growth phenotype of the pgr5 mutant, but it did not compensate for the impaired photosynthesis and photoinhibition sensitivity. This suggests that the physiological role of TRXm4 occurs in vivo via a mechanism distinct from direct up-regulation of CEF.


Assuntos
Arabidopsis/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Tiorredoxinas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Transporte de Elétrons , Ativação Enzimática , Etilmaleimida/farmacologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Luz , Mutagênese Insercional , NADH Desidrogenase/metabolismo , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema I/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/efeitos da radiação , Plastoquinona/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiorredoxinas/genética , Nicotiana/genética , Nicotiana/metabolismo
12.
Planta ; 234(1): 83-95, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21369921

RESUMO

The synthesis of phytochelatins (PC) represents a major metal and metalloid detoxification mechanism in various species. PC most likely play a role in the distribution and accumulation of Cd and possibly other metals. However, to date, no studies have investigated the phytochelatin synthase (PCS) genes and their expression in the Cd-hyperaccumulating species. We used functional screens in two yeast species to identify genes expressed by two Cd hyperaccumulators (Arabidopsis halleri and Thlaspi caerulescens) and involved in cellular Cd tolerance. As a result of these screens, PCS genes were identified for both species. PCS1 was in each case the dominating cDNA isolated. The deduced sequences of AhPCS1 and TcPCS1 are very similar to AtPCS1 and their identity is particularly high in the proposed catalytic N-terminal domain. We also identified in A. halleri and T. caerulescens orthologues of AtPCS2 that encode functional PCS. As compared to A. halleri and A. thaliana, T. caerulescens showed the lowest PCS expression. Furthermore, concentrations of PC in Cd-treated roots were the highest in A. thaliana, intermediate in A. halleri and the lowest in T. caerulescens. This mirrors the known capacity of these species to translocate Cd to the shoot, with T. caerulescens being the best translocator. Very low or undetectable concentrations of PC were measured in A. halleri and T. caerulescens shoots, contrary to A. thaliana. These results suggest that extremely efficient alternative Cd sequestration pathways in leaves of Cd hyperaccumulators prevent activation of PC synthase by Cd²âº ions.


Assuntos
Aminoaciltransferases/metabolismo , Arabidopsis/enzimologia , Fitoquelatinas/biossíntese , Thlaspi/enzimologia , Sequência de Aminoácidos , Aminoaciltransferases/química , Aminoaciltransferases/isolamento & purificação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Cádmio/metabolismo , Quelantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Thlaspi/genética , Thlaspi/metabolismo , Zinco/metabolismo
13.
Mol Plant ; 4(1): 83-96, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20978086

RESUMO

Calcium-dependent protein kinases (CDPKs) comprise a family of plant serine/threonine protein kinases in which the calcium sensing domain and the kinase effector domain are combined within one molecule. So far, a biological function in abiotic stress signaling has only been reported for few CDPK isoforms, whereas the underlying biochemical mechanism for these CDPKs is still mainly unknown. Here, we show that CPK21 from Arabidopsis thaliana is biochemically activated in vivo in response to hyperosmotic stress. Loss-of-function seedlings of cpk21 are more tolerant to hyperosmotic stress and mutant plants show increased stress responses with respect to marker gene expression and metabolite accumulation. In transgenic Arabidopsis complementation lines in the cpk21 mutant background, in which either CPK21 wild-type, or a full-length enzyme variant carrying an amino-acid substitution were stably expressed, stress responsitivity was restored by CPK21 but not with the kinase inactive variant. The biochemical characterization of in planta synthesized and purified CPK21 protein revealed that within the calcium-binding domain, N-terminal EF1- and EF2-motifs compared to C-terminal EF3- and EF4-motifs differ in their contribution to calcium-regulated kinase activity, suggesting a crucial role for the N-terminal EF-hand pair. Our data provide evidence for CPK21 contributing in abiotic stress signaling and suggest that the N-terminal EF-hand pair is a calcium-sensing determinant controlling specificity of CPK21 function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Proteínas Quinases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Osmose , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Estresse Fisiológico
14.
J Exp Bot ; 60(9): 2653-64, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19443614

RESUMO

Molecular chaperones of the heat shock cognate 70 kDa (HSC70) family are highly conserved in all living organisms and assist nascent protein folding in normal physiological conditions as well as in biotic and abiotic stress conditions. In the absence of specific inhibitors or viable knockout mutants, cytosolic/nuclear HSC70-1 overexpression (OE) and mutants in the HSC70 co-chaperone SGT1 (suppressor of G(2)/M allele of skp1) were used as genetic tools to identify HSC70/SGT1 functions in Arabidopsis development and abiotic stress responses. HSC70-1 OE caused a reduction in root and shoot meristem activities, thus explaining the dwarfism of those plants. In addition, HSC70-1 OE did not impair auxin-dependent phenotypes, suggesting that SGT1 functions previously identified in auxin signalling are HSC70 independent. While responses to abiotic stimuli such as UV-C exposure, phosphate starvation, or seedling de-etiolation were not perturbed by HSC70-1 OE, it specifically conferred gamma-ray hypersensitivity and tolerance to salt, cadmium (Cd), and arsenic (As). Cd and As perception was not perturbed, but plants overexpressing HSC70-1 accumulated less Cd, thus providing a possible molecular explanation for their tolerance phenotype. In summary, genetic evidence is provided for HSC70-1 involvement in a limited set of physiological processes, illustrating the essential and yet specific functions of this chaperone in development and abiotic stress responses in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Núcleo Celular/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSC70/metabolismo , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Arsênio/metabolismo , Cádmio/metabolismo , Núcleo Celular/genética , Raios gama , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas de Choque Térmico HSC70/genética , Ácidos Indolacéticos/metabolismo , Tolerância ao Sal , Transdução de Sinais , Raios Ultravioleta
15.
FEBS Lett ; 580(30): 6891-7, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17150215

RESUMO

ABC transporters from the multidrug resistance-associated protein (MRP) subfamily are glutathione S-conjugate pumps exhibiting a broad substrate specificity illustrated by numerous xenobiotics, such as anticancer drugs, herbicides, pesticides and heavy metals. The engineering of MRP transporters into plants might be interesting either to reduce the quantity of xenobiotics taken up by the plant in the context of "safe-food" strategies or, conversely, in the development of phytoremediation strategies in which xenobiotics are sequestered in the vacuolar compartment. In this report, we obtained Arabidopsis transgenic plants overexpressing human MRP1. In these plants, expression of MRP1 did not increase plant resistance to antimony salts (Sb(III)), a classical glutathione-conjugate substrate of MRP1. However, the transporter was fully translated in roots and shoots, and targeted to the plasma membrane. In order to investigate the functionality of MRP1 in Arabidopsis, mesophyll cell protoplasts (MCPs) were isolated from transgenic plants and transport activities were measured by using calcein or Sb(III) as substrates. Expression of MRP1 at the plasma membrane was correlated with an increase in the MCPs resistance to Sb(III) and a limitation of the metalloid content in the protoplasts due to an improvement in Sb(III) efflux. Moreover, Sb(III) transport was sensitive to classical inhibitors of the human MRP1, such as MK571 or glibenclamide. These results demonstrate that a human ABC transporter can be functionally introduced in Arabidopsis, which might be useful, with the help of stronger promoters, to reduce the accumulation of xenobiotics in plants, such as heavy metals from multi-contaminated soils.


Assuntos
Antimônio/química , Antimônio/farmacologia , Arabidopsis/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Sais/química , Antineoplásicos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Transporte Biológico , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reporter/genética , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plantas Geneticamente Modificadas , Biossíntese de Proteínas/genética , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...