Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(11): e0058323, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37882561

RESUMO

We report the complete genome of Paenibacillus sp. strain VCA1, which was isolated from sediment from El Chichón Volcano. This genome consists of 6,690,819 bp and 6,312 coding sequences, with 51.8% G+C content. Whole-genome sequencing was performed to explore the strain's biocontrol and plant growth promotion properties.

2.
Nat Microbiol ; 8(10): 1787-1798, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37770747

RESUMO

Since 2016, Yemen has been experiencing the largest cholera outbreak in modern history. Multidrug resistance (MDR) emerged among Vibrio cholerae isolates from cholera patients in 2018. Here, to characterize circulating genotypes, we analysed 260 isolates sampled in Yemen between 2018 and 2019. Eighty-four percent of V. cholerae isolates were serogroup O1 belonging to the seventh pandemic El Tor (7PET) lineage, sub-lineage T13, whereas 16% were non-toxigenic, from divergent non-7PET lineages. Treatment of severe cholera with macrolides between 2016 and 2019 coincided with the emergence and dominance of T13 subclones carrying an incompatibility type C (IncC) plasmid harbouring an MDR pseudo-compound transposon. MDR plasmid detection also in endemic non-7PET V. cholerae lineages suggested genetic exchange with 7PET epidemic strains. Stable co-occurrence of the IncC plasmid with the SXT family of integrative and conjugative element in the 7PET background has major implications for cholera control, highlighting the importance of genomic epidemiological surveillance to limit MDR spread.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Cólera/epidemiologia , Vibrio cholerae O1/genética , Iêmen/epidemiologia , Plasmídeos/genética , Genômica
3.
PLoS Biol ; 21(4): e3002072, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37083687

RESUMO

Anti-clustered regularly interspaced short palindromic repeats (CRISPRs) are proteins capable of blocking CRISPR-Cas systems and typically their genes are located on mobile genetic elements. Since their discovery, numerous anti-CRISPR families have been identified. However, little is known about the distribution and sequence diversity of members within a family, nor how these traits influence the anti-CRISPR's function and evolution. Here, we use AcrIF7 to explore the dissemination and molecular evolution of an anti-CRISPR family. We uncovered 5 subclusters and prevalent anti-CRISPR variants within the group. Remarkably, AcrIF7 homologs display high similarity despite their broad geographical, ecological, and temporal distribution. Although mainly associated with Pseudomonas aeruginosa, AcrIF7 was identified in distinct genetic backgrounds indicating horizontal dissemination, primarily by phages. Using mutagenesis, we recreated variation observed in databases but also extended the sequence diversity of the group. Characterisation of the variants identified residues key for the anti-CRISPR function and other contributing to its mutational tolerance. Moreover, molecular docking revealed that variants with affected function lose key interactions with its CRISPR-Cas target. Analysis of publicly available data and the generated variants suggests that the dominant AcrIF7 variant corresponds to the minimal and optimal anti-CRISPR selected in the family. Our study provides a blueprint to investigate the molecular evolution of anti-CRISPR families.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Humanos , Simulação de Acoplamento Molecular , Sistemas CRISPR-Cas/genética , Bacteriófagos/genética , Evolução Molecular , Mutação
4.
Nucleic Acids Res ; 51(1): 236-252, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36610752

RESUMO

Mobile genetic elements (MGEs) mediate the shuffling of genes among organisms. They contribute to the spread of virulence and antibiotic resistance (AMR) genes in human pathogens, such as the particularly problematic group of ESKAPE pathogens. Here, we performed the first systematic analysis of MGEs, including plasmids, prophages, and integrative and conjugative/mobilizable elements (ICEs/IMEs), across all ESKAPE pathogens. We found that different MGE types are asymmetrically distributed across these pathogens, and that most horizontal gene transfer (HGT) events are restricted by phylum or genus. We show that the MGEs proteome is involved in diverse functional processes and distinguish widespread proteins within the ESKAPE context. Moreover, anti-CRISPRs and AMR genes are overrepresented in the ESKAPE mobilome. Our results also underscore species-specific trends shaping the number of MGEs, AMR, and virulence genes across pairs of conspecific ESKAPE genomes with and without CRISPR-Cas systems. Finally, we observed that CRISPR spacers found on prophages, ICEs/IMEs, and plasmids have different targeting biases: while plasmid and prophage CRISPRs almost exclusively target other plasmids and prophages, respectively, ICEs/IMEs CRISPRs preferentially target prophages. Overall, our study highlights the general importance of the ESKAPE mobilome in contributing to the spread of AMR and mediating conflict among MGEs.


Assuntos
Antibacterianos , Sequências Repetitivas Dispersas , Humanos , Sequências Repetitivas Dispersas/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Transferência Genética Horizontal/genética , Prófagos/genética
5.
Front Cell Infect Microbiol ; 13: 1280265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298921

RESUMO

Background: Bacteriophage therapy is becoming part of mainstream Western medicine since antibiotics of clinical use tend to fail. It involves applying lytic bacteriophages that self-replicate and induce cell lysis, thus killing their hosts. Nevertheless, bacterial killing promotes the selection of resistant clones which sometimes may exhibit a decrease in bacterial virulence or antibiotic resistance. Methods: In this work, we studied the Pseudomonas aeruginosa lytic phage φDCL-PA6 and its variant φDCL-PA6α. Additionally, we characterized and evaluated the production of virulence factors and the virulence in a Galleria mellonella model of resistant mutants against each phage for PA14 and two clinical strains. Results: Phage φDCL-PA6α differs from the original by only two amino acids: one in the baseplate wedge subunit and another in the tail fiber protein. According to genomic data and cross-resistance experiments, these changes may promote the change of the phage receptor from the O-antigen to the core lipopolysaccharide. Interestingly, the host range of the two phages differs as determined against the Pseudomonas aeruginosa reference strains PA14 and PAO1 and against nine multidrug-resistant isolates from ventilator associated pneumonia. Conclusions: We show as well that phage resistance impacts virulence factor production. Specifically, phage resistance led to decreased biofilm formation, swarming, and type III secretion; therefore, the virulence towards Galleria mellonella was dramatically attenuated. Furthermore, antibiotic resistance decreased for one clinical strain. Our study highlights important potential advantages of phage therapy's evolutionary impact that may be exploited to generate robust therapy schemes.


Assuntos
Bacteriófagos , Mariposas , Terapia por Fagos , Fagos de Pseudomonas , Animais , Virulência , Pseudomonas aeruginosa , Fagos de Pseudomonas/genética , Fatores de Virulência/genética , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia
6.
Nat Commun ; 13(1): 5195, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057639

RESUMO

The genus Serratia has been studied for over a century and includes clinically-important and diverse environmental members. Despite this, there is a paucity of genomic information across the genus and a robust whole genome-based phylogenetic framework is lacking. Here, we have assembled and analysed a representative set of 664 genomes from across the genus, including 215 historic isolates originally used in defining the genus. Phylogenomic analysis of the genus reveals a clearly-defined population structure which displays deep divisions and aligns with ecological niche, as well as striking congruence between historical biochemical phenotyping data and contemporary genomics data. We highlight the genomic, phenotypic and plasmid diversity of Serratia, and provide evidence of different patterns of gene flow across the genus. Our work provides a framework for understanding the emergence of clinical and other lineages of Serratia.


Assuntos
Genoma Bacteriano , Genômica , Genoma Bacteriano/genética , Filogenia , Plasmídeos , Serratia/genética
8.
Nat Rev Microbiol ; 20(4): 191, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35149840
9.
Philos Trans R Soc Lond B Biol Sci ; 377(1842): 20200472, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34839707

RESUMO

Naturally occurring plasmids come in different sizes. The smallest are less than a kilobase of DNA, while the largest can be over three orders of magnitude larger. Historically, research has tended to focus on smaller plasmids that are usually easier to isolate, manipulate and sequence, but with improved genome assemblies made possible by long-read sequencing, there is increased appreciation that very large plasmids-known as megaplasmids-are widespread, diverse, complex, and often encode key traits in the biology of their host microorganisms. Why are megaplasmids so big? What other features come with large plasmid size that could affect bacterial ecology and evolution? Are megaplasmids 'just' big plasmids, or do they have distinct characteristics? In this perspective, we reflect on the distribution, diversity, biology, and gene content of megaplasmids, providing an overview to these large, yet often overlooked, mobile genetic elements. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.


Assuntos
Plasmídeos , Plasmídeos/genética
10.
ISME J ; 15(8): 2379-2389, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33654265

RESUMO

Pseudomonas aeruginosa is a primary bacterial model to study cooperative behaviors because it yields exoproducts such as siderophores and exoproteases that act as public goods and can be exploited by selfish nonproducers behaving as social cheaters. Iron-limited growth medium, mainly casamino acids medium supplemented with transferrin, is typically used to isolate and study nonproducer mutants of the siderophore pyoverdine. However, using a protein as the iron chelator could inadvertently select mutants unable to produce exoproteases, since these enzymes can degrade the transferrin to facilitate iron release. Here we investigated the evolutionary dynamics of pyoverdine and exoprotease production in media in which iron was limited by using either transferrin or a cation chelating resin. We show that concomitant loss of pyoverdine and exoprotease production readily develops in media containing transferrin, whereas only pyoverdine loss emerges in medium treated with the resin. Characterization of exoprotease- and pyoverdine-less mutants revealed loss in motility, different mutations, and large genome deletions (13-33 kb) including Quorum Sensing (lasR, rsal, and lasI) and flagellar genes. Our work shows that using transferrin as an iron chelator imposes simultaneous selective pressure for the loss of pyoverdine and exoprotease production. The unintended effect of transferrin uncovered by our experiments can help to inform the design of similar studies.


Assuntos
Ferro , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Exopeptidases , Ferro/metabolismo , Oligopeptídeos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sideróforos , Transferrina
11.
mSystems ; 6(1)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531404

RESUMO

Phages are generally described as species specific or even strain specific, implying an inherent limitation for some to be maintained and spread in diverse bacterial communities. Moreover, phage isolation and host range determination rarely consider the phage ecological context, likely biasing our notion on phage specificity. Here we isolated and characterized a novel group of six promiscuous phages, named Atoyac, existing in rivers and sewage by using a diverse collection of over 600 bacteria retrieved from the same environments as potential hosts. These podophages isolated from different regions in Mexico display a remarkably broad host range, infecting bacteria from six genera: Aeromonas, Pseudomonas, Yersinia, Hafnia, Escherichia, and Serratia Atoyac phage genomes are ∼42 kb long and highly similar to each other, but not to those currently available in genome and metagenome public databases. Detailed comparison of the phages' efficiency of plating (EOP) revealed variation among bacterial genera, implying a cost associated with infection of distant hosts, and between phages, despite their sequence similarity. We show, through experimental evolution in single or alternate hosts of different genera, that efficiency of plaque production is highly dynamic and tends toward optimization in hosts rendering low plaque formation. However, adaptation to distinct hosts differed between similar phages; whereas one phage optimized its EOP in all tested hosts, the other reduced plaque production in one host, suggesting that propagation in multiple bacteria may be key to maintain promiscuity in some viruses. Our study expands our knowledge of the virosphere and uncovers bacterium-phage interactions overlooked in natural systems.IMPORTANCE In natural environments, phages coexist and interact with a broad variety of bacteria, posing a conundrum for narrow-host-range phage maintenance in diverse communities. This context is rarely considered in the study of host-phage interactions, typically focused on narrow-host-range viruses and their infectivity in target bacteria isolated from sources distinct to where the phages were retrieved from. By studying phage-host interactions in bacteria and viruses isolated from river microbial communities, we show that novel phages with promiscuous host range encompassing multiple bacterial genera can be found in the environment. Assessment of hundreds of interactions in diverse hosts revealed that similar phages exhibit different infection efficiency and adaptation patterns. Understanding host range is fundamental in our knowledge of bacterium-phage interactions and their impact on microbial communities. The dynamic nature of phage promiscuity revealed in our study has implications in different aspects of phage research such as horizontal gene transfer or phage therapy.

12.
Front Microbiol ; 11: 590294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281786

RESUMO

If there is something we have learned from the antibiotic era, it is that indiscriminate use of a therapeutic agent without a clear understanding of its long-term evolutionary impact can have enormous health repercussions. This knowledge is particularly relevant when the therapeutic agents are remarkably adaptable and diverse biological entities capable of a plethora of interactions, most of which remain largely unexplored. Although phage therapy (PT) undoubtedly holds the potential to save lives, its current efficacy in case studies recalls the golden era of antibiotics, when these compounds were highly effective and the possibility of them becoming ineffective seemed remote. Safe PT schemes depend on our understanding of how phages interact with, and evolve in, highly complex environments. Here, we summarize and review emerging evidence in a commonly overlooked theme in PT: bacteria-phage interactions. In particular, we discuss the influence of quorum sensing (QS) on phage susceptibility, the consequent role of phages in modulating bacterial cooperation, and the potential implications of this relationship in PT, including how we can use this knowledge to inform PT strategies. We highlight that the influence of QS on phage susceptibility seems to be widespread but can have contrasting outcomes depending on the bacterial host, underscoring the need to thoroughly characterize this link in various bacterial models. Furthermore, we encourage researchers to exploit competition experiments, experimental evolution, and mathematical modeling to explore this relationship further in relevant infection models. Finally, we emphasize that long-term PT success requires research on phage ecology and evolution to inform the design of optimal therapeutic schemes.

13.
J Virol ; 94(15)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32461312

RESUMO

In this study, we describe seven vegetative phage genomes homologous to the historic phage B3 that infect Pseudomonas aeruginosa Like other phage groups, the B3-like group contains conserved (core) and variable (accessory) open reading frames (ORFs) grouped at fixed regions in their genomes; however, in either case, many ORFs remain without assigned functions. We constructed lysogens of the seven B3-like phages in strain Ps33 of P. aeruginosa, a novel clinical isolate, and assayed the exclusion phenotype against a variety of temperate and virulent superinfecting phages. In addition to the classic exclusion conferred by the phage immunity repressor, the phenotype observed in B3-like lysogens suggested the presence of other exclusion genes. We set out to identify the genes responsible for this exclusion phenotype. Phage Ps56 was chosen as the study subject since it excluded numerous temperate and virulent phages. Restriction of the Ps56 genome, cloning of several fragments, and resection of the fragments that retained the exclusion phenotype allowed us to identify two core ORFs, so far without any assigned function, as responsible for a type of exclusion. Neither gene expressed separately from plasmids showed activity, but the concurrent expression of both ORFs is needed for exclusion. Our data suggest that phage adsorption occurs but that phage genome translocation to the host's cytoplasm is defective. To our knowledge, this is the first report on this type of exclusion mediated by a prophage in P. aeruginosaIMPORTANCEPseudomonas aeruginosa is a Gram-negative bacterium frequently isolated from infected immunocompromised patients, and the strains are resistant to a broad spectrum of antibiotics. Recently, the use of phages has been proposed as an alternative therapy against multidrug-resistant bacteria. However, this approach may present various hurdles. This work addresses the problem that pathogenic bacteria may be lysogenized by phages carrying genes encoding resistance against secondary infections, such as those used in phage therapy. Discovering phage genes that exclude superinfecting phages not only assigns novel functions to orphan genes in databases but also provides insight into selection of the proper phages for use in phage therapy.


Assuntos
DNA Viral , Genes Virais , Fases de Leitura Aberta , Prófagos , Fagos de Pseudomonas , Pseudomonas aeruginosa , DNA Viral/genética , DNA Viral/metabolismo , Prófagos/genética , Prófagos/metabolismo , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/virologia
14.
Nat Commun ; 11(1): 1370, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170080

RESUMO

Multidrug resistance (MDR) represents a global threat to health. Here, we used whole genome sequencing to characterise Pseudomonas aeruginosa MDR clinical isolates from a hospital in Thailand. Using long-read sequence data we obtained complete sequences of two closely related megaplasmids (>420 kb) carrying large arrays of antibiotic resistance genes located in discrete, complex and dynamic resistance regions, and revealing evidence of extensive duplication and recombination events. A comprehensive pangenomic and phylogenomic analysis indicates that: 1) these large plasmids comprise an emerging family present in different members of the Pseudomonas genus, and associated with multiple sources (geographical, clinical or environmental); 2) the megaplasmids encode diverse niche-adaptive accessory traits, including multidrug resistance; 3) the accessory genome of the megaplasmid family is highly flexible and diverse. The history of the megaplasmid family, inferred from our analysis of the available database, suggests that members carrying multiple resistance genes date back to at least the 1970s.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos/genética , Plasmídeos/genética , Pseudomonas/genética , Antibacterianos/farmacologia , DNA Bacteriano/genética , Evolução Molecular , Genômica , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/classificação , Plasmídeos/isolamento & purificação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Tailândia , Sequenciamento Completo do Genoma
15.
Arch Microbiol ; 202(3): 617-622, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31773196

RESUMO

The repurposing of gallium nitrate as an antibacterial, a drug used previously for the treatment of hypercalcemia, is a plausible alternative to combat infections by Pseudomonas aeruginosa, since it has antipseudomonal properties in vitro and in vivo in animal models and in human lung infections. Furthermore, gallium nitrate tolerance in clinical isolates is very rare. Nevertheless, studies on the reference strains PA14 and PAO1 show that resistance against gallium nitrate is achieved by decreasing gallium intracellular levels by increasing the production of pyocyanin. In this work, we induced resistance in a cystic fibrosis P. aeruginosa isolate and explored its resistance mechanisms. This isolated strain, INP-58M, was not a pyocyanin producer, and its pyoverdine levels remained unchanged upon gallium addition. However, it showed higher activities of NADPH-producing enzymes and the antioxidant enzyme SOD when gallium was added, which suggests a better antioxidant response. Remarkably, gallium intracellular levels in the resistant isolate were higher than those of the parental strain at 20 h but lower after 24 h of culture, suggesting that this strain is capable of gallium efflux.


Assuntos
Antibacterianos/farmacologia , Fibrose Cística/microbiologia , Gálio/farmacologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Reposicionamento de Medicamentos , Farmacorresistência Bacteriana , Humanos , Oligopeptídeos/biossíntese , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/metabolismo , Piocianina/biossíntese
16.
Nat Microbiol ; 4(10): 1727-1736, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31285584

RESUMO

Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world's countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome.


Assuntos
Bacteriófagos/genética , Coevolução Biológica , Microbioma Gastrointestinal , Animais , Bacteriófagos/classificação , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/virologia , DNA Viral/genética , Fezes/virologia , Feminino , Variação Genética , Humanos , Masculino , Filogenia , Filogeografia , Primatas/virologia
17.
Front Microbiol ; 8: 1669, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28912771

RESUMO

Quorum sensing (QS) in Pseudomonas aeruginosa coordinates the expression of virulence factors, some of which are used as public goods. Since their production is a cooperative behavior, it is susceptible to social cheating in which non-cooperative QS deficient mutants use the resources without investing in their production. Nevertheless, functional QS systems are abundant; hence, mechanisms regulating the amount of cheating should exist. Evidence that demonstrates a tight relationship between QS and the susceptibility of bacteria against the attack of lytic phages is increasing; nevertheless, the relationship between temperate phages and QS has been much less explored. Therefore, in this work, we studied the effects of having a functional QS system on the susceptibility to temperate bacteriophages and how this affects the bacterial and phage dynamics. We find that both experimentally and using mathematical models, that the lysogenic bacteriophages D3112 and JBD30 select QS-proficient P. aeruginosa phenotypes as compared to the QS-deficient mutants during competition experiments with mixed strain populations in vitro and in vivo in Galleria mellonella, in spite of the fact that both phages replicate better in the wild-type background. We show that this phenomenon restricts social cheating, and we propose that temperate phages may constitute an important selective pressure toward the conservation of bacterial QS.

18.
Arch Virol ; 162(8): 2345-2355, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28462462

RESUMO

Bacteriophages (phages) are estimated to be the most abundant and diverse entities in the biosphere harboring vast amounts of novel genetic information. Despite the genetic diversity observed, many phages share common features, such as virion morphology, genome size and organization, and can readily be associated with clearly defined phage groups. However, other phages display unique genomes or, alternatively, mosaic genomes composed of regions that share homology with those of phages of diverse origins; thus, their relationships cannot be easily assessed. In this work, we present a functional and comparative genomic analysis of Pseudomonas aeruginosa phage PaMx25, a virulent member of the Siphoviridae family. The genomes of PaMx25 and a highly homologous phage NP1, bore sequence homology and synteny with the genomes of phages that infect hosts different than Pseudomonas. In order to understand the relationship of the PaMx25 genome with that of other phages, we employed several computational approaches. We found that PaMx25 and NP1 effectively bridged several phage groups. It is expected that as more phage genomes become available, more gaps will be filled, blurring the boundaries that currently separate phage groups.


Assuntos
Genoma Viral , Fagos de Pseudomonas/classificação , Pseudomonas aeruginosa/virologia , Siphoviridae/classificação , Variação Genética , Filogenia , Proteômica , Fagos de Pseudomonas/genética , Siphoviridae/genética , Sintenia
19.
Appl Environ Microbiol ; 82(22): 6541-6547, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27590812

RESUMO

Previously, a collection of virulent phages infecting Pseudomonas aeruginosa was isolated from open water reservoirs and residual waters. Here, we described the comparative genomics of a set of five related phages from the collection, the physical structure of the genome, the structural proteomics of the virion, and the transcriptional program of archetypal phage PaMx41. The phage genomes were closely associated with each other and with those of two other P. aeruginosa phages, 119X and PaP2, which were previously filed in the databases. Overall, the genomes were approximately 43 kb, harboring 53 conserved open reading frames (ORFs) and three short ORFs in indel regions and containing 45% GC content. The genome of PaMx41 was further characterized as a linear, terminally redundant DNA molecule. A total of 16 ORFs were associated with putative functions, including nucleic acid metabolism, morphogenesis, and lysis, and eight virion proteins were identified through mass spectrometry. However, the coding sequences without assigned functions represent 70% of the ORFs. The PaMx41 transcription program was organized in early, middle, and late expressed genomic modules, which correlated with regions containing functionally related genes. The high genomic conservation among these distantly isolated phages suggests that these viruses undergo selective pressure to remain unchanged. The 119X lineage represents a unique set of phages that corresponds to a novel phage group. The features recognized in the genomes and the broad host range of clinical strains suggest that these phages are candidates for therapy applications. IMPORTANCE: Pseudomonas aeruginosa is an opportunistic pathogen that causes stubborn nosocomial infections that are frequently resistant to multiple antibiotics. Bacterial viruses (bacteriophages or phages) represent a natural mechanism for pathogenic bacterial control. Here, a group of virulent phages, previously shown to infect a broad range of clinical P. aeruginosa strains, was characterized at the genomic and molecular levels. These phages belong to a unique and tightly related group. In addition, we conducted a transcriptional study of an archetypal phage of this group to characterize the role of many unknown coding sequences based on expression temporalities. These results contribute to our knowledge of 119X-like phages and, in general, provide information concerning P. aeruginosa podophage diversity and lytic cycles.


Assuntos
Genes Virais , Genoma Viral , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/virologia , Composição de Bases , DNA Viral/genética , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Especificidade de Hospedeiro , Fases de Leitura Aberta , Filogenia , Fagos de Pseudomonas/fisiologia , Análise de Sequência de DNA , Vírion/genética
20.
BMC Genomics ; 15: 1146, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25527250

RESUMO

BACKGROUND: Bacteriophages that infect the opportunistic pathogen Pseudomonas aeruginosa have been classified into several groups. One of them, which includes temperate phage particles with icosahedral heads and long flexible tails, bears genomes whose architecture and replication mechanism, but not their nucleotide sequences, are like those of coliphage Mu. By comparing the genomic sequences of this group of P. aeruginosa phages one could draw conclusions about their ontogeny and evolution. RESULTS: Two newly isolated Mu-like phages of P. aeruginosa are described and their genomes sequenced and compared with those available in the public data banks. The genome sequences of the two phages are similar to each other and to those of a group of P. aeruginosa transposable phages. Comparing twelve of these genomes revealed a common genomic architecture in the group. Each phage genome had numerous genes with homologues in all the other genomes and a set of variable genes specific for each genome. The first group, which comprised most of the genes with assigned functions, was named "core genome", and the second group, containing mostly short ORFs without assigned functions was called "accessory genome". Like in other phage groups, variable genes are confined to specific regions in the genome. CONCLUSION: Based on the known and inferred functions for some of the variable genes of the phages analyzed here, they appear to confer selective advantages for the phage survival under particular host conditions. We speculate that phages have developed a mechanism for horizontally acquiring genes to incorporate them at specific loci in the genome that help phage adaptation to the selective pressures imposed by the host.


Assuntos
Genes Virais , Genoma Viral , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/virologia , Bases de Dados de Ácidos Nucleicos , Ordem dos Genes , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Fagos de Pseudomonas/classificação , Fagos de Pseudomonas/ultraestrutura , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...