Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 19: 1755-1765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025088

RESUMO

Electron and hole transport characteristics were evaluated for perylene-based and pyrene-based compounds using electron-only and hole-only devices. The perylene presented a columnar hexagonal liquid crystal phase at room temperature with strong molecular π-stacking inside the columns. The pyrene crystallizes bellow 166 °C, preserving the close-packed columnar rectangular structure of the mesophase. Photophysical analysis and numerical calculations assisted the interpretation of positive and negative charge carrier mobilities obtained from fitting the space charge limited regime of current vs voltage curves. The pyrene-based material demonstrated an electron mobility two orders of magnitude higher than the perylene one, indicating the potential of this class of materials as electron transporting layer.

2.
ACS Appl Electron Mater ; 4(7): 3486-3494, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910938

RESUMO

Delayed fluorescence (DF) by triplet-triplet annihilation (TTA) is observed in solutions of a benzoperylene-imidoester mesogen that shows a hexagonal columnar mesophase at room temperature in the neat state. A similar benzoperylene-imide with a slightly smaller HOMO-LUMO gap, that also is hexagonal columnar liquid crystalline at room temperature, does not show DF in solution, and mixtures of the two mesogens show no DF in solution either, because of collisional quenching of the excited triplet states on the imidoester by the imide. In contrast, DF by TTA from the imide but not from the imidoester is observed in condensed films of such mixtures, even though neat films of either single material are not displaying DF. In contrast to the DF from the monomeric imidoester in solution, DF of the imide occurs from dimeric aggregates in the blend films, assisted by the imidoester. Thus, the close contact of intimately stacked molecules of the two different species in the columnar mesophase leads to a unique mesophase-assisted aggregate DF. This constitutes the first observation of DF by TTA from the columnar liquid crystalline state. If the imide is dispersed in films of polybromostyrene, which provides an external heavy-atom effect facilitating triplet formation, DF is also observed. Organic light-emitting diodes (OLEDs) devices incorporating these liquid crystal molecules demonstrated high external quantum efficiency (EQE). On the basis of the literature and to the best of our knowledge, the EQE reported is the highest among nondoped solution-processed OLED devices using a columnar liquid crystal molecule as the emitting layer.

3.
Front Chem ; 8: 360, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32478032

RESUMO

Herein, we report the synthesis and characterization of fluorophores containing a 2,1,3-benzoxadiazole unit associated with a π-conjugated system (D-π-A-π-D). These new fluorophores in solution exhibited an absorption maximum at around ~419 nm (visible region), as expected for electronic transitions of the π-π* type (ε ~2.7 × 107 L mol-1 cm-1), and strong solvent-dependent fluorescence emission (ΦFL ~0.5) located in the bluish-green region. The Stokes' shift of these compounds is ca. 3,779 cm-1, which was attributed to an intramolecular charge transfer (ICT) state. In CHCl3 solution, the compounds exhibited longer and shorter lifetimes, which was attributed to the emission of monomeric and aggregated molecules, respectively. Density functional theory was used to model the electronic structure of the compounds 9a-d in their excited and ground electronic states. The simulated emission spectra are consistent with the experimental results, with different solvents leading to a shift in the emission peak and the attribution of a π-π* state with the characteristics of a charge transfer excitation. The thermal properties were analyzed by thermogravimetric analysis, and a high maximum degradation rate occurred at around 300°C. Electrochemical studies were also performed in order to determine the band gaps of the molecules. The electrochemical band gaps (2.48-2.70 eV) showed strong correlations with the optical band gaps (2.64-2.67 eV).

4.
Phys Chem Chem Phys ; 17(48): 32390-7, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26585027

RESUMO

The optical and electrical properties of mesogenic metal-free and metalated phthalocyanines (PCs) with a moderately sized and regioregular alkyl periphery were investigated. In solution, the individualized molecules show fluorescence lifetimes of 4-6 ns in THF. When deposited as solid thin films the materials exhibit significantly shorter fluorescence lifetimes with bi-exponential decay (1.4-1.8 ns; 0.2-0.4 ns) that testify to the formation of aggregates viaπ-π intermolecular interactions. In diode structures, their pronounced columnar order outbalances the unfavorable planar alignment and leads to excellent rectification behavior. Field-dependent charge carrier mobilities are obtained from the J-V curves in the trap-limited space-charge-limited current regime and demonstrate that the metalated PCs display an improved electrical response with respect to the metal-free homologue. The excited-state lifetime characterization suggest that the π-π intermolecular interactions are stronger for the metal-free PC, confirming that the metallic centre plays an important role in the charge transport inside these materials.

5.
Phys Chem Chem Phys ; 17(32): 20530-6, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26198411

RESUMO

We present a study on the photoluminescence (PL) of thin films of poly-(p-phenylene vinylene) (PPV), non-stretched and uniaxially stretched. The experimental study was carried out using linear polarized light as the excitation beam, oriented either parallel or perpendicular to the stretch axis (S). The results showed that when the excitation light source has polarization perpendicularly oriented to the stretch direction, the emitted PL presents maximum intensity in the orientation S, and a minimum in the direction orthogonal to S. In order to understand this interesting phenomenon, we employ theoretical simulations at the atomistic level. We use classical molecular dynamics to simulate amorphous PPV films, non-stretched and stretched, from which we find a tendency of overall alignment of PV units to S, and of local clustering in herring-bone and π-stacking partial symmetries. Our study of optical activity of these kinds of clusters, performed through a quantum semi-empirical method, allows us to explain this polarization conversion behavior, and indicates the possibility of using underivatized PPV as the active layer for polarized electroluminescent devices.

6.
Chemphyschem ; 10(12): 2096-104, 2009 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-19449356

RESUMO

A series of {(9,9-dioctylfluorene)(0.7-x)-(dibenzothiophene-S,S-dioxide)(0.3)-[4,7-bis(2-thienyl)-2,1,3-benzothiadiazole](x)} (PFS(30)-TBTx), where x represents the minor percentage of the red emitter 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (TBT) randomly incorporated into the copolymer backbone, is investigated in order to follow the energy transfer from PFS(30) to TBT moieties. The emission of the donor poly[(9,9-dioctylfluorene)(0.7)-(dibenzothiophene-S,S-dioxide)(0.3) identified by PFS(30) and peaking at 450 nm, is clearly quenched by the presence of the red TBT chromophore emitting at 612 nm, with an isoemissive point observed when the spectra are collected as a function of temperature. A plot of the ratio between the TBT and PFS(30) emissions as a function of the reciprocal of temperature gives a clear linear trend between 290 and 200 K, with an activation energy of 20 meV and showing a turn over to a non-activated regime below 200 K. Picosecond time-resolved fluorescence decays collected at the PFS(30) and TBT emission wavelengths, show a decay of the PFS(30) emission and a fast build-in, followed by a decay, of the TBT emission, confirming that the population of the TBT excited state occurs during the PFS(30) lifetime (approximately 600 ps). The population of the TBT excited state occurs on a time regime around 150 ps at 290 K, showing an energy barrier of 20 meV that turns over to a non-activated regime below 200 K in clear agreement with the steady-state data. The origin of the activation barrier is attributed to the presence of physical and energetic disorder, affected by fast thermal fluctuations that dynamically change the energy landscape and control the exciton migration through the polymer density of states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...