Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 103(6): 1038-1046, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29567785

RESUMO

Alteration in the DNA replication, repair or recombination processes is a highly relevant mechanism of genomic instability. Despite genomic aberrations manifested in hematologic malignancies, such a defect as a source of biomarkers has been underexplored. Here, we investigated the prognostic value of expression of 82 genes involved in DNA replication-repair-recombination in a series of 99 patients with chronic lymphocytic leukemia without detectable 17p deletion or TP53 mutation. We found that expression of the POLN gene, encoding the specialized DNA polymerase ν (Pol ν) correlates with time to relapse after first-line therapy with fludarabine. Moreover, we found that POLN was the only gene up-regulated in primary patients' lymphocytes when exposed in vitro to proliferative and pro-survival stimuli. By using two cell lines that were sequentially established from the same patient during the course of the disease and Pol ν knockout mouse embryonic fibroblasts, we reveal that high relative POLN expression is important for DNA synthesis and cell survival upon fludarabine treatment. These findings suggest that Pol ν could influence therapeutic resistance in chronic lymphocytic leukemia. (Patients' samples were obtained from the CLL 2007 FMP clinical trial registered at: clinicaltrials.gov identifer: 00564512).


Assuntos
DNA Polimerase Dirigida por DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , Proteína Supressora de Tumor p53/genética , Vidarabina/análogos & derivados , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , DNA Polimerase Dirigida por DNA/metabolismo , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/mortalidade , Camundongos , Mutação , Prognóstico , Modelos de Riscos Proporcionais , Vidarabina/farmacologia , Vidarabina/uso terapêutico
2.
Stem Cells Transl Med ; 6(1): 68-76, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28170194

RESUMO

Adipose-derived stem cells (ADSCs) have led to growing interest in cell-based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA-seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress-associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine 2017;6:68-76.


Assuntos
Tecido Adiposo/citologia , Carcinogênese/patologia , Replicação do DNA/efeitos dos fármacos , DNA/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/farmacologia , Células-Tronco/citologia , Estresse Fisiológico , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cromossomos Humanos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
3.
Elife ; 52016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27740454

RESUMO

The levels of the cyclin-dependent kinase (CDK) inhibitor p21 are low in S phase and insufficient to inhibit CDKs. We show here that endogenous p21, instead of being residual, it is functional and necessary to preserve the genomic stability of unstressed cells. p21depletion slows down nascent DNA elongation, triggers permanent replication defects and promotes the instability of hard-to-replicate genomic regions, namely common fragile sites (CFS). The p21's PCNA interacting region (PIR), and not its CDK binding domain, is needed to prevent the replication defects and the genomic instability caused by p21 depletion. The alternative polymerase kappa is accountable for such defects as they were not observed after simultaneous depletion of both p21 and polymerase kappa. Hence, in CDK-independent manner, endogenous p21 prevents a type of genomic instability which is not triggered by endogenous DNA lesions but by a dysregulation in the DNA polymerase choice during genomic DNA synthesis.


Assuntos
Divisão Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Replicação do DNA , DNA/biossíntese , Instabilidade Genômica , Células Cultivadas , Humanos
4.
Sci Signal ; 9(445): ra90, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27625304

RESUMO

The nucleoside analog cytarabine, an inhibitor of DNA replication fork progression that results in DNA damage, is currently used in the treatment of acute myeloid leukemia (AML). We explored the prognostic value of the expression of 72 genes involved in various aspects of DNA replication in a set of 198 AML patients treated by cytarabine-based chemotherapy. We unveiled that high expression of the DNA replication checkpoint gene CHEK1 is a prognostic marker associated with shorter overall, event-free, and relapse-free survivals and determined that the expression of CHEK1 can predict more frequent and earlier postremission relapse. CHEK1 encodes checkpoint kinase 1 (CHK1), which is activated by the kinase ATR when DNA replication is impaired by DNA damage. High abundance of CHK1 in AML patient cells correlated with higher clonogenic ability and more efficient DNA replication fork progression upon cytarabine treatment. Exposing the patient cells with the high abundance of CHK1 to SCH900776, an inhibitor of the kinase activity of CHK1, reduced clonogenic ability and progression of DNA replication in the presence of cytarabine. These results indicated that some AML cells rely on an efficient CHK1-mediated replication stress response for viability and that therapeutic strategies that inhibit CHK1 could extend current cytarabine-based treatments and overcome drug resistance. Furthermore, monitoring CHEK1 expression could be used both as a predictor of outcome and as a marker to select AML patients for CHK1 inhibitor treatments.


Assuntos
Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinase 1 do Ponto de Checagem/metabolismo , Citarabina/farmacologia , Replicação do DNA/efeitos dos fármacos , Feminino , Humanos , Leucemia Mieloide Aguda/enzimologia , Masculino , Proteínas de Neoplasias/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(5): 1393-8, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26764384

RESUMO

Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Replicação do DNA/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas com Domínio LIM/genética , Animais , Células-Tronco Hematopoéticas/citologia , Camundongos , Origem de Replicação , Fase S
6.
BMC Cancer ; 14: 850, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25409685

RESUMO

BACKGROUND: One of the hallmarks of cancer is the occurrence of high levels of chromosomal rearrangements as a result of inaccurate repair of double-strand breaks (DSB). Germline mutations in BRCA and RAD51 genes, involved in DSB repair, are strongly associated with hereditary breast cancer. Pol θ, a translesional DNA polymerase specialized in the replication of damaged DNA, has been also shown to contribute to DNA synthesis associated to DSB repair. It is noteworthy that POLQ is highly expressed in breast tumors and this expression is able to predict patient outcome. The objective of this study was to analyze genetic variants related to POLQ as new population biomarkers of risk in hereditary (HBC) and sporadic (SBC) breast cancer. METHODS: We analyzed through case-control study nine SNPs of POLQ in hereditary (HBC) and sporadic (SBC) breast cancer patients using Taqman Real Time PCR assays. Polymorphisms were systematically identified through the NCBI database and are located within exons or promoter regions. We recruited 204 breast cancer patients (101 SBC and 103 HBC) and 212 unaffected controls residing in Southern Brazil. RESULTS: The rs581553 SNP located in the promoter region was strongly associated with HBC (c.-1060A > G; HBC GG = 15, Control TT = 8; OR = 5.67, CI95% = 2.26-14.20; p < 0.0001). Interestingly, 11 of 15 homozygotes for this polymorphism fulfilled criteria for Hereditary Breast and Ovarian Cancer (HBOC) syndrome. Furthermore, 12 of them developed bilateral breast cancer and one had a familial history of bilateral breast cancer. This polymorphism was also associated with bilateral breast cancer in 67 patients (OR = 9.86, CI95% = 3.81-25.54). There was no statistically significant difference of age at breast cancer diagnosis between SNP carriers and non-carriers. CONCLUSIONS: Considering that Pol θ is involved in DBS repair, our results suggest that this polymorphism may contribute to the etiology of HBC, particularly in patients with bilateral breast cancer.


Assuntos
Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , Predisposição Genética para Doença , Variação Genética , Alelos , Substituição de Aminoácidos , Neoplasias da Mama/genética , Estudos de Casos e Controles , Feminino , Frequência do Gene , Genótipo , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Humanos , Razão de Chances , Polimorfismo de Nucleotídeo Único , DNA Polimerase teta
7.
Nat Commun ; 5: 4285, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24989122

RESUMO

Although DNA polymerase θ (Pol θ) is known to carry out translesion synthesis and has been implicated in DNA repair, its physiological function under normal growth conditions remains unclear. Here we present evidence that Pol θ plays a role in determining the timing of replication in human cells. We find that Pol θ binds to chromatin during early G1, interacts with the Orc2 and Orc4 components of the Origin recognition complex and that the association of Mcm proteins with chromatin is enhanced in G1 when Pol θ is downregulated. Pol θ-depleted cells exhibit a normal density of activated origins in S phase, but early-to-late and late-to-early shifts are observed at a number of replication domains. Pol θ overexpression, on the other hand, causes delayed replication. Our results therefore suggest that Pol θ functions during the earliest steps of DNA replication and influences the timing of replication initiation.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Fase G1 , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/metabolismo , Humanos , Proteínas de Manutenção de Minicromossomo/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Fase S , DNA Polimerase teta
8.
Dis Markers ; 2014: 798170, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24876664

RESUMO

BACKGROUND: Colorectal and breast cancers are among the most common cancers worldwide. They result from a conjugated deficiency of gene maintenance and cell cycle control. OBJECTIVE: We investigate the expression of the microtubule-associated protein MAP9/ASAP and its two partners AURKA and PLK1 in colorectal tumors as well as in ductal breast cancers. MATERIALS AND METHODS: 26 colorectal cancer samples and adjacent normal tissues and 77 ductal breast cancer samples from grade I to grade III were collected. Real-time quantitative PCR was used to analyse the expression of MAP9, AURKA, and PLK1. Results. Expression of MAP9 is downregulated in colorectal cancer compared to normal tissues (P > 10(-3)), whereas those of AURKA and PLK1 are upregulated (P > 10(-4)). In ductal breast cancer, we found a grade-dependent increase of AURKA expression (P > 10(-3)), while the variations of expression of MAP9 and PLK1 are not significant (P > 0.2). CONCLUSIONS: MAP9 downregulation is associated with colorectal malignancy and could be used as a disease marker and a new drug target, while AURKA and PLK1 are upregulated. In ductal breast cancer, AURKA overexpression is strongly associated with the tumor grade and is therefore of prognostic value for the progression of the disease.


Assuntos
Adenocarcinoma/enzimologia , Aurora Quinase A/metabolismo , Neoplasias da Mama/enzimologia , Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorretais/enzimologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Adenocarcinoma/patologia , Idoso , Idoso de 80 Anos ou mais , Aurora Quinase A/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/patologia , Feminino , Expressão Gênica , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Gradação de Tumores , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Quinase 1 Polo-Like
9.
BMC Cancer ; 14: 121, 2014 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24559140

RESUMO

BACKGROUND: It remains presently unclear whether disease progression in colorectal carcinoma (CRC), from early, to invasive and metastatic forms, is associated to a gradual increase in genetic instability and to a scheme of sequentially occurring Copy Number Alterations (CNAs). METHODS: In this work we set to determine the existence of such links between CRC progression and genetic instability and searched for associations with patient outcome. To this aim we analyzed a set of 162 Chromosomal Instable (CIN) CRCs comprising 131 primary carcinomas evenly distributed through stage 1 to 4, 31 metastases and 14 adenomas by array-CGH. CNA profiles were established according to disease stage and compared. We, also, asked whether the level of genomic instability was correlated to disease outcome in stage 2 and 3 CRCs. Two metrics of chromosomal instability were used; (i) Global Genomic Index (GGI), corresponding to the fraction of the genome involved in CNA, (ii) number of breakpoints (nbBP). RESULTS: Stage 1, 2, 3 and 4 tumors did not differ significantly at the level of their CNA profiles precluding the conventional definition of a progression scheme based on increasing levels of genetic instability. Combining GGI and nbBP,we classified genomic profiles into 5 groups presenting distinct patterns of chromosomal instability and defined two risk classes of tumors, showing strong differences in outcome and hazard risk (RFS: p = 0.012, HR = 3; OS: p < 0.001, HR = 9.7). While tumors of the high risk group were characterized by frequent fractional CNAs, low risk tumors presented predominantly whole chromosomal arm CNAs. Searching for CNAs correlating with negative outcome we found that losses at 16p13.3 and 19q13.3 observed in 10% (7/72) of stage 2-3 tumors showed strong association with early relapse (p < 0.001) and death (p < 0.007, p < 0.016). Both events showed frequent co-occurrence (p < 1x10-8) and could, therefore, mark for stage 2-3 CRC susceptible to negative outcome. CONCLUSIONS: Our data show that CRC disease progression from stage 1 to stage 4 is not paralleled by increased levels of genetic instability. However, they suggest that stage 2-3 CRC with elevated genetic instability and particularly profiles with fractional CNA represent a subset of aggressive tumors.


Assuntos
Instabilidade Cromossômica/genética , Neoplasias Colorretais/genética , Recidiva Local de Neoplasia/genética , Prognóstico , Adulto , Idoso , Carcinoma in Situ/genética , Pontos de Quebra do Cromossomo , Neoplasias Colorretais/patologia , Hibridização Genômica Comparativa , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/patologia , Resultado do Tratamento
10.
J Mol Biol ; 425(23): 4767-81, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24095858

RESUMO

In addition to the canonical right-handed double helix, DNA molecule can adopt several other non-B DNA structures. Readily formed in the genome at specific DNA repetitive sequences, these secondary conformations present a distinctive challenge for progression of DNA replication forks. Impeding normal DNA synthesis, cruciforms, hairpins, H DNA, Z DNA and G4 DNA considerably impact the genome stability and in some instances play a causal role in disease development. Along with previously discovered dedicated DNA helicases, the specialized DNA polymerases emerge as major actors performing DNA synthesis through these distorted impediments. In their new role, they are facilitating DNA synthesis on replication stalling sites formed by non-B DNA structures and thereby helping the completion of DNA replication, a process otherwise crucial for preserving genome integrity and concluding normal cell division. This review summarizes the evidence gathered describing the function of specialized DNA polymerases in replicating DNA through non-B DNA structures.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , DNA/metabolismo , Genoma Humano , Instabilidade Genômica , Humanos , Conformação de Ácido Nucleico
11.
EMBO J ; 32(15): 2172-85, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23799366

RESUMO

Formation of primed single-stranded DNA at stalled replication forks triggers activation of the replication checkpoint signalling cascade resulting in the ATR-mediated phosphorylation of the Chk1 protein kinase, thus preventing genomic instability. By using siRNA-mediated depletion in human cells and immunodepletion and reconstitution experiments in Xenopus egg extracts, we report that the Y-family translesion (TLS) DNA polymerase kappa (Pol κ) contributes to the replication checkpoint response and is required for recovery after replication stress. We found that Pol κ is implicated in the synthesis of short DNA intermediates at stalled forks, facilitating the recruitment of the 9-1-1 checkpoint clamp. Furthermore, we show that Pol κ interacts with the Rad9 subunit of the 9-1-1 complex. Finally, we show that this novel checkpoint function of Pol κ is required for the maintenance of genomic stability and cell proliferation in unstressed human cells.


Assuntos
Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Instabilidade Genômica/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Quinase 1 do Ponto de Checagem , DNA Polimerase Dirigida por DNA/genética , Células HeLa , Humanos , Proteínas Quinases/genética , Proteínas de Xenopus/genética , Xenopus laevis
12.
J Cell Biol ; 201(3): 395-408, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23609533

RESUMO

Human DNA polymerase η (Pol η) is best known for its role in responding to UV irradiation-induced genome damage. We have recently observed that Pol η is also required for the stability of common fragile sites (CFSs), whose rearrangements are considered a driving force of oncogenesis. Here, we explored the molecular mechanisms underlying this newly identified role. We demonstrated that Pol η accumulated at CFSs upon partial replication stress and could efficiently replicate non-B DNA sequences within CFSs. Pol η deficiency led to persistence of checkpoint-blind under-replicated CFS regions in mitosis, detectable as FANCD2-associated chromosomal sites that were transmitted to daughter cells in 53BP1-shielded nuclear bodies. Expression of a catalytically inactive mutant of Pol η increased replication fork stalling and activated the replication checkpoint. These data are consistent with the requirement of Pol η-dependent DNA synthesis during S phase at replication forks stalled in CFS regions to suppress CFS instability by preventing checkpoint-blind under-replicated DNA in mitosis.


Assuntos
Sítios Frágeis do Cromossomo , DNA Polimerase Dirigida por DNA/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Fragilidade Cromossômica , Replicação do DNA , DNA de Forma B/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/fisiologia , Recombinação Homóloga , Humanos , Sequências Repetidas Invertidas , Mitose , Ligação Proteica , Pontos de Checagem da Fase S do Ciclo Celular , Estresse Fisiológico
13.
Mol Biochem Parasitol ; 183(2): 122-31, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22369885

RESUMO

Specific DNA repair pathways from Trypanosoma cruzi are believed to protect genomic DNA and kinetoplast DNA (kDNA) from mutations. Particular pathways are supposed to operate in order to repair nucleotides oxidized by reactive oxygen species (ROS) during parasite infection, being 7,8-dihydro-8-oxoguanine (8oxoG) a frequent and highly mutagenic base alteration. If unrepaired, 8oxoG can lead to cytotoxic base transversions during DNA replication. In mammals, DNA polymerase beta (Polß) is mainly involved in base excision repair (BER) of oxidative damage. However its biological role in T. cruzi is still unknown. We show, by immunofluorescence localization, that T. cruzi DNA polymerase beta (Tcpolß) is restricted to the antipodal sites of kDNA in replicative epimastigote and amastigote developmental stages, being strictly localized to kDNA antipodal sites between G1/S and early G2 phase in replicative epimastigotes. Nevertheless, this polymerase was detected inside the mitochondrial matrix of trypomastigote forms, which are not able to replicate in culture. Parasites over expressing Tcpolß showed reduced levels of 8oxoG in kDNA and an increased survival after treatment with hydrogen peroxide when compared to control cells. However, this resistance was lost after treating Tcpolß overexpressors with methoxiamine, a potent BER inhibitor. Curiously, a presumed DNA repair focus containing Tcpolß was identified in the vicinity of kDNA of cultured wild type epimastigotes after treatment with hydrogen peroxide. Taken together our data suggest participation of Tcpolß during kDNA replication and repair of oxidative DNA damage induced by genotoxic stress in this organelle.


Assuntos
DNA Polimerase beta/metabolismo , Reparo do DNA , Replicação do DNA , DNA de Cinetoplasto/metabolismo , Trypanosoma cruzi/enzimologia , Microscopia de Fluorescência , Mitocôndrias/química , Mitocôndrias/enzimologia , Estresse Oxidativo , Trypanosoma cruzi/química , Trypanosoma cruzi/genética
14.
Semin Cancer Biol ; 20(5): 312-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20934518

RESUMO

The cell life span depends on a subtle equilibrium between the accurate duplication of the genomic DNA and less stringent DNA transactions which allow cells to tolerate mutations associated with DNA damage. The physiological role of the alternative, specialized or TLS (translesion synthesis) DNA polymerases could be to favor the necessary "flexibility" of the replication machinery, by allowing DNA replication to occur even in the presence of blocking DNA damage. As these alternative DNA polymerases are inaccurate when replicating undamaged DNA, the regulation of their expression needs to be carefully controlled. Evidence in the literature supports that dysregulation of these error-prone enzymes contributes to the acquisition of a mutator phenotype that, along with defective cell cycle control or other genome stability pathways, could be a motor for accelerated tumor progression.


Assuntos
Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Genes Neoplásicos , Instabilidade Genômica , Mutação , Neoplasias/genética , Animais , Aberrações Cromossômicas , Dano ao DNA , Reparo do DNA , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Instabilidade de Microssatélites , Mutagênese
15.
Carcinogenesis ; 31(10): 1742-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20693240

RESUMO

The human DNA polymerase lambda (Polλ) is a DNA repair polymerase, which is believed not only to play a role in base excision repair but also to contribute to DNA double-strand break repair by non-homologous end joining. We described here that cellular expression of the recently described natural polymorphic variant of Polλ, Polλ(R438W), affects the homologous recombination (HR) pathway and sister chromatid exchange (SCE) events. We show that the HR defect provoked by this polymorphism enhances cellular sensitivity to the anticancer agent camptothecin (CPT), most of whose DNA damage is repaired by HR. All these effects were dependent on the DNA polymerase activity of Polλ(R438W) as the expression of a catalytically inactive Polλ(R438W) did not affect either the HR and SCE frequencies or the cellular sensitivity to CPT. These results suggest that sensitivity to CPT could result from cancer-related mutation in specialized DNA repair polymerases.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Camptotecina/farmacologia , DNA Polimerase beta/genética , Reparo do DNA/efeitos dos fármacos , Polimorfismo Genético , Recombinação Genética/efeitos dos fármacos , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Troca de Cromátide Irmã
16.
Proc Natl Acad Sci U S A ; 107(30): 13390-5, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20624954

RESUMO

"Replicative stress" is one of the main factors underlying neoplasia from its early stages. Genes involved in DNA synthesis may therefore represent an underexplored source of potential prognostic markers for cancer. To this aim, we generated gene expression profiles from two independent cohorts (France, n=206; United Kingdom, n=117) of patients with previously untreated primary breast cancers. We report here that among the 13 human nuclear DNA polymerase genes, DNA Polymerase (POLQ) is the only one significantly up-regulated in breast cancer compared with normal breast tissues. Importantly, POLQ up-regulation significantly correlates with poor clinical outcome (4.3-fold increased risk of death in patients with high POLQ expression), and this correlation is independent of Cyclin E expression or the number of positive nodes, which are currently considered as markers for poor outcome. POLQ expression provides thus an additional indicator for the survival outcome of patients with high Cyclin E tumor expression or high number of positive lymph nodes. Furthermore, to decipher the molecular consequences of POLQ up-regulation in breast cancer, we generated human MRC5-SV cell lines that stably overexpress POLQ. Strong POLQ expression was directly associated with defective DNA replication fork progression and chromosomal damage. Therefore, POLQ overexpression may be a promising genetic instability and prognostic marker for breast cancer.


Assuntos
Neoplasias da Mama/genética , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/genética , Instabilidade Genômica , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Estudos de Coortes , Ciclina E/genética , Dano ao DNA , Feminino , França , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Prognóstico , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Reino Unido , Regulação para Cima , DNA Polimerase teta
17.
PLoS One ; 4(10): e7290, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19806195

RESUMO

BACKGROUND: DNA polymerase lambda (Pollambda) is a DNA repair polymerase, which likely plays a role in base excision repair (BER) and in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSB). PRINCIPAL FINDINGS: Here, we described a novel natural allelic variant of human Pollambda (hPollambda) characterized by a single nucleotide polymorphism (SNP), C/T variation in the first base of codon 438, resulting in the amino acid change Arg to Trp. In vitro enzyme activity assays of the purified W438 Pollambda variant revealed that it retained both DNA polymerization and deoxyribose phosphate (dRP) lyase activities, but had reduced base substitution fidelity. Ectopic expression of the W438 hPollambda variant in mammalian cells increases mutation frequency, affects the DSB repair NHEJ pathway, and generates chromosome aberrations. All these phenotypes are dependent upon the catalytic activity of the W438 hPollambda. CONCLUSIONS: The expression of a cancer-related natural variant of one specialized DNA polymerase can be associated to generic instability at the cromosomal level, probably due a defective NHEJ. These results establish that chromosomal aberrations can result from mutations in specialized DNA repair polymerases.


Assuntos
Instabilidade Cromossômica/genética , DNA Polimerase beta/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Mutação , Aminoácidos/química , Arginina/química , Aberrações Cromossômicas , Códon , DNA/química , Quebras de DNA de Cadeia Dupla , Análise Mutacional de DNA , DNA Polimerase beta/fisiologia , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Polimorfismo de Nucleotídeo Único , Triptofano/química
18.
Cancer Res ; 69(12): 5177-85, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19491276

RESUMO

The repair DNA polymerase beta (Polbeta), when overexpressed, plays a critical role in generating genetic instability via its interference with the genomic replication program. Up-regulation of Polbeta has been reported in many tumor types that exhibit genetic aberrations, including EBV-related B-cell lymphomas. However, the mechanisms responsible for its overexpression have never been examined. Here, we report that both expression and activity of Polbeta, in EBV-immortalized B cells, are induced by several natural genetic variants of LMP1, an oncoprotein associated with the vast majority of EBV-related tumors. Conversely, we found that the expression of Polbeta decreased when LMP1 signaling was down-regulated by a dominant negative of LMP1 or an inhibitor of the nuclear factor-kappaB (NF-kappaB) pathway, the main transduction pathway activated by LMP1, strongly supporting a role of NF-kappaB in the LMP1-mediated Polbeta regulation. Using electrophoretic mobility shift assay experiments from several EBV-immortalized B-cell nuclear extracts, we identified an LMP1-dependent p50/c-Rel heterodimer on a proximal kappaB binding site (-211 to -199nt) of the Polbeta promoter. This result was correlated with a specific Polbeta kappaB transcriptional activity. Taken together, our data enlighten a new mechanism responsible for Polbeta overexpression in EBV-infected cells, mediated by LMP1 and dependent on NF-kappaB activation.


Assuntos
DNA Polimerase beta/metabolismo , NF-kappa B/metabolismo , Proteínas da Matriz Viral/fisiologia , Animais , Sequência de Bases , Linhagem Celular Transformada , DNA , Ensaio de Desvio de Mobilidade Eletroforética , Ativação Enzimática , Camundongos , Dados de Sequência Molecular
19.
Mol Cell Biol ; 29(12): 3344-54, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19380493

RESUMO

Human DNA polymerase eta (Pol eta) modulates susceptibility to skin cancer by promoting translesion DNA synthesis (TLS) past sunlight-induced cyclobutane pyrimidine dimers. Despite its well-established role in TLS synthesis, the role of Pol eta in maintaining genome stability in the absence of external DNA damage has not been well explored. We show here that short hairpin RNA-mediated depletion of Pol eta from undamaged human cells affects cell cycle progression and the rate of cell proliferation and results in increased spontaneous chromosome breaks and common fragile site expression with the activation of ATM-mediated DNA damage checkpoint signaling. These phenotypes were also observed in association with modified replication factory dynamics during S phase. In contrast to that seen in Pol eta-depleted cells, none of these cellular or karyotypic defects were observed in cells depleted for Pol iota, the closest relative of Pol eta. Our results identify a new role for Pol eta in maintaining genomic stability during unperturbed S phase and challenge the idea that the sole functional role of Pol eta in human cells is in TLS DNA damage tolerance and/or repair pathways following exogenous DNA damage.


Assuntos
Sítios Frágeis do Cromossomo/fisiologia , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Sequência de Bases , Ciclo Celular , Linhagem Celular , Proliferação de Células , Quebra Cromossômica , Dano ao DNA , DNA Polimerase Dirigida por DNA/genética , Instabilidade Genômica/fisiologia , Humanos , Hibridização in Situ Fluorescente , Mutagênese Sítio-Dirigida , Inibidores da Síntese de Ácido Nucleico , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
20.
Mol Carcinog ; 48(4): 369-78, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19117014

RESUMO

Accurate DNA replication during S-phase is fundamental to maintain genome integrity. During this critical process, replication forks frequently encounter obstacles that impede their progression. While the regulatory pathways which act in response to exogenous replication stress are beginning to emerge, the mechanisms by which fork integrity is maintained at naturally occurring endogenous replication-impeding sequences remains obscure. Notably, little is known about how cells replicate through special chromosomal regions containing structured non-B DNA, for example, G4 quartets, known to hamper fork progression or trigger chromosomal rearrangements. Here, we have investigated the role in this process of the human translesion synthesis (TLS) DNA polymerases of the Y-family (pol eta, pol iota, and pol kappa), specialized enzymes known to synthesize DNA through DNA damage. We show that depletion by RNA interference of expression of the genes for Pol eta or Pol kappa, but not Pol iota, sensitizes U2OS cells treated with the G4-tetraplex interactive compound telomestatin and triggers double-strand breaks in HeLa cells harboring multiple copies of a G-rich sequence from the promoter region of the human c-MYC gene, chromosomally integrated as a transgene. Moreover, we found that downregulation of Pol kappa only raises the level of DSB in HeLa cells containing either one of two breakage hotspot structured DNA sequences in the chromosome, the major break region (Mbr) of BCL-2 gene and the GA rich region from the far right-hand end of the genome of the Kaposi Sarcoma associated Herpesvirus. These data suggest that naturally occurring DNA structures are physiological substrates of both pol eta and pol kappa. We discuss these data in the light of their downregulation in human cancers.


Assuntos
Neoplasias Colorretais/genética , Replicação do DNA , DNA Polimerase Dirigida por DNA/fisiologia , Quadruplex G , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/secundário , Western Blotting , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Ensaio de Unidades Formadoras de Colônias , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Dano ao DNA , Citometria de Fluxo , Inativação Gênica , Genes myc/genética , Células HeLa , Histonas/metabolismo , Humanos , Inibidores da Síntese de Ácido Nucleico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Oxazóis/farmacologia , Regiões Promotoras Genéticas/genética , DNA Polimerase iota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...