Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6582, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503902

RESUMO

Although pancreatic precancerous lesions are known to be related to obesity and fatty pancreatic infiltration, the mechanisms remain unclear. We assessed the role of fatty infiltration in the process of pancreatic oncogenesis and obesity. A combined transcriptomic, lipidomic and pathological approach was used to explore neoplastic transformations. Intralobular (ILF) and extralobular (ELF) lipidomic profiles were analyzed to search for lipids associated with pancreatic intraepithelial neoplasia (PanINs) and obesity; the effect of ILF and ELF on acinar tissue and the histopathological aspects of pancreatic parenchyma changes in obese (OB) and non-obese patients. This study showed that the lipid composition of ILF was different from that of ELF. ILF was related to obesity and ELF-specific lipids were correlated to PanINs. Acinar cells were shown to have different phenotypes depending on the presence and proximity to ILF in OB patients. Several lipid metabolic pathways, oxidative stress and inflammatory pathways were upregulated in acinar tissue during ILF infiltration in OB patients. Early acinar transformations, called acinar nodules (AN) were linked to obesity but not ELF or ILF suggesting that they are the first reversible precancerous pancreatic lesions to occur in OB patients. On the other hand, the number of PanINs was higher in OB patients and was positively correlated to ILF and ELF scores as well as to fibrosis. Our study suggests that two types of fat infiltration must be distinguished, ELF and ILF. ILF plays a major role in acinar modifications and the development of precancerous lesions associated with obesity, while ELF may play a role in the progression of PDAC.


Assuntos
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Lesões Pré-Cancerosas , Humanos , Pâncreas/metabolismo , Neoplasias Pancreáticas/patologia , Transformação Celular Neoplásica/genética , Carcinoma in Situ/patologia , Lesões Pré-Cancerosas/patologia , Obesidade/complicações , Obesidade/patologia , Lipídeos , Carcinoma Ductal Pancreático/patologia
2.
JHEP Rep ; 6(2): 100913, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304236

RESUMO

Background & Aims: Hepatocellular adenomas (HCAs) are rare, benign, liver tumours classified at the clinicopathological, genetic, and proteomic levels. The ß-catenin-activated (b-HCA) subtypes harbour several mutation types in the ß-catenin gene (CTNNB1) associated with different risks of malignant transformation or bleeding. Glutamine synthetase is a surrogate marker of ß-catenin pathway activation associated with the risk of malignant transformation. Recently, we revealed an overexpression of glutamine synthetase in the rims of exon 3 S45-mutated b-HCA and exon 7/8-mutated b-HCA compared with the rest of the tumour. A difference in vascularisation was found in this rim shown by diffuse CD34 staining only at the tumour centre. Here, we aimed to characterise this tumour heterogeneity to better understand its physiopathological involvement. Methods: Using mass spectrometry imaging, genetic, and proteomic analyses combined with laser capture microdissection, we compared the tumour centre with the tumour rim and with adjacent non-tumoural tissue. Results: The tumour rim harboured the same mutation as the tumour centre, meaning both parts belong to the same tumour. Mass spectrometry imaging showed different spectral profiles between the rim and the tumour centre. Proteomic profiling revealed the significant differential expression of 40 proteins at the rim compared with the tumour centre. The majority of these proteins were associated with metabolism, with an expression profile comparable with a normal perivenous hepatocyte expression profile. Conclusions: The difference in phenotype between the tumour centres and tumour rims of exon 3 S45-mutated b-HCA and exon 7/8-mutated b-HCA does not depend on CTNNB1 mutational status. In a context of sinusoidal arterial pathology, tumour heterogeneity at the rim harbours perivenous characteristics and could be caused by a functional peripheral venous drainage. Impact and implications: Tumour heterogeneity was revealed in ß-catenin-mutated hepatocellular adenomas (b-HCAs) via the differential expression of glutamine synthase at tumour rims. The combination of several spatial approaches (mass spectrometry imaging, genetic, and proteomic analyses) after laser capture microdissection allowed identification of a potential role for peripheral venous drainage underlying this difference. Through this study, we were able to illustrate that beyond a mutational context, many factors can downstream regulate gene expression and contribute to different clinicopathological phenotypes. We believe that the combinations of spatial analyses that we used could be inspiring for all researchers wanting to access heterogeneity information of liver tumours.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA