Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Acta Physiol (Oxf) ; 240(7): e14165, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38747536

RESUMO

AIM: Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow obstruction and development of emphysema. Among the comorbidities associated with COPD, skeletal muscle dysfunction is known to affect exercise capacity and the survival rate of patients. Pulmonary rehabilitation (PR), via exercise training, is essential for COPD patients. However, the response to PR is most often moderate. An animal model that recapitulates critical features of chronic human disease and provides access to muscle function should therefore be useful to improve PR benefits. METHODS: We used a rat model of induced emphysema based on pulmonary instillations of elastase (ELA) and lipopolysaccharides (LPS). We assessed the long-term effects of ELA/LPS and the potential effectiveness of endurance training on the skeletal muscle function. In vivo strength of the animals, and ex vivo contractility, endurance, type 1 fiber proportion, fiber cross-sectional area, and capillarization of both soleus and extensor digitorum longus (EDL) were assessed. RESULTS: An impaired overall muscle strength with decreased force, reduced capillarization, and atrophy of type 1 fiber of EDL was observed in ELA/LPS rats. Soleus was not affected. Endurance training was able to reduce fatigability, and increase type 1 fiber proportion and capillarization of soleus, and improve force, endurance, and capillarization of EDL in control and ELA/LPS rats. CONCLUSION: Our rat model of induced emphysema, which shares some features with the phenotype present in patients with COPD, could represent a suitable model to study skeletal muscle dysfunction and the effects of exercise training on muscle function in patients.


Assuntos
Modelos Animais de Doenças , Músculo Esquelético , Condicionamento Físico Animal , Enfisema Pulmonar , Animais , Enfisema Pulmonar/fisiopatologia , Músculo Esquelético/fisiopatologia , Condicionamento Físico Animal/fisiologia , Ratos , Masculino , Força Muscular/fisiologia , Ratos Sprague-Dawley , Ratos Wistar
2.
J Cachexia Sarcopenia Muscle ; 15(2): 536-551, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221511

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle weakness due to the absence of functional dystrophin. DMD patients also develop dilated cardiomyopathy (DCM). We have previously shown that DMD (mdx) mice and a canine DMD model (GRMD) exhibit abnormal intracellular calcium (Ca2+) cycling related to early-stage pathological remodelling of the ryanodine receptor intracellular calcium release channel (RyR2) on the sarcoplasmic reticulum (SR) contributing to age-dependent DCM. METHODS: Here, we used hiPSC-CMs from DMD patients selected by Speckle-tracking echocardiography and canine DMD cardiac biopsies to assess key early-stage Duchenne DCM features. RESULTS: Dystrophin deficiency was associated with RyR2 remodelling and SR Ca2+ leak (RyR2 Po of 0.03 ± 0.01 for HC vs. 0.16 ± 0.01 for DMD, P < 0.01), which led to early-stage defects including senescence. We observed higher levels of senescence markers including p15 (2.03 ± 0.75 for HC vs. 13.67 ± 5.49 for DMD, P < 0.05) and p16 (1.86 ± 0.83 for HC vs. 10.71 ± 3.00 for DMD, P < 0.01) in DMD hiPSC-CMs and in the canine DMD model. The fibrosis was increased in DMD hiPSC-CMs. We observed cardiac hypocontractility in DMD hiPSC-CMs. Stabilizing RyR2 pharmacologically by S107 prevented most of these pathological features, including the rescue of the contraction amplitude (1.65 ± 0.06 µm for DMD vs. 2.26 ± 0.08 µm for DMD + S107, P < 0.01). These data were confirmed by proteomic analyses, in particular ECM remodelling and fibrosis. CONCLUSIONS: We identified key cellular damages that are established earlier than cardiac clinical pathology in DMD patients, with major perturbation of the cardiac ECC. Our results demonstrated that cardiac fibrosis and premature senescence are induced by RyR2 mediated SR Ca2+ leak in DMD cardiomyocytes. We revealed that RyR2 is an early biomarker of DMD-associated cardiac damages in DMD patients. The progressive and later DCM onset could be linked with the RyR2-mediated increased fibrosis and premature senescence, eventually causing cell death and further cardiac fibrosis in a vicious cycle leading to further hypocontractility as a major feature of DCM. The present study provides a novel understanding of the pathophysiological mechanisms of the DMD-induced DCM. By targeting RyR2 channels, it provides a potential pharmacological treatment.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Humanos , Camundongos , Animais , Cães , Cardiomiopatia Dilatada/etiologia , Distrofina/genética , Distrofina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Camundongos Endogâmicos mdx , Cálcio/metabolismo , Proteômica , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fibrose
3.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628790

RESUMO

Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease involving airway closure and parenchyma destruction (emphysema). Cardiovascular diseases are the main causes of morbi-mortality in COPD and, in particular, hypertension and heart failure with preserved ejection fraction (HFpEF). However, no mechanistic link has currently been established between the onset of COPD, elevated blood pressure (BP) and systemic vascular impairment (endothelial dysfunction). Thus, we aimed to characterize BP and vascular function and remodeling in a rat model of exacerbated emphysema focusing on the role of sympathetic hyperactivity. Emphysema was induced in male Wistar rats by four weekly pulmonary instillations of elastase (4UI) and exacerbation by a single dose of lipopolysaccharides (LPS). Five weeks following the last instillation, in vivo and ex vivo cardiac and vascular functions were investigated. Exacerbated emphysema induced cardiac dysfunction (HFpEF) and a BP increase in this COPD model. We observed vasomotor changes and hypotrophic remodeling of the aorta without endothelial dysfunction. Indeed, changes in contractile and vasorelaxant properties, though endothelium-dependent, were pro-relaxant and NO-independent. A ß1-receptor antagonist (bisoprolol) prevented HFpEF and vascular adaptations, while the effect on BP increase was partial. Endothelial dysfunction would not trigger hypertension and HFpEF in COPD. Vascular changes appeared as an adaptation to the increased BP. The preventing effect of bisoprolol revealed a pivotal role of sympathetic hyperactivation in BP elevation. The mechanistic link between HFpEF, cardiac sympathetic activation and BP deserves further studies in this exacerbated-emphysema model, as well as in COPD patients.


Assuntos
Enfisema , Insuficiência Cardíaca , Hipertensão , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Masculino , Ratos , Animais , Bisoprolol , Pressão Sanguínea , Ratos Wistar , Volume Sistólico
4.
Pflugers Arch ; 475(10): 1203-1210, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37603101

RESUMO

The contractility of cardiac muscle is greatly affected by preload via the Frank-Starling mechanism (FSM). It is based on preload-dependent activation of sarcomeres-the elementary contractile units in muscle cells. Recent findings show a natural variability in sarcomere length (SL) in resting cardiomyocytes that, moreover, is altered in an actively contracting myocyte. SL variability may contribute to the FSM, but it remains unresolved whether the change in the SL variability is regulated by activation process per se or simply by changes in cell stretch, i.e., average SL. To separate the roles of activation and SL, we characterized SL variability in isolated, fully relaxed rat ventricular cardiomyocytes (n = 12) subjected to a longitudinal stretch with the carbon fiber (CF) technique. Each cell was tested in three states: without CF attachment (control, no preload), with CF attachment without stretch, and with CF attachment and ~ 10% stretch of initial SL. The cells were imaged by transmitted light microscopy to retrieve and analyze individual SL and SL variability off-line by multiple quantitative measures such as coefficient of variation or median absolute deviation. We found that CF attachment without stretch did not affect the extent of SL variability nor average SL. In stretched myocytes, the averaged SL significantly increased, while the SL variability remained unchanged. This result clearly indicates that the non-uniformity of individual SL is not sensitive to the average SL itself in fully relaxed myocytes. We conclude that SL variability per se does not contribute to the FSM in the heart.


Assuntos
Miócitos Cardíacos , Sarcômeros , Animais , Ratos , Miocárdio , Descanso , Contração Muscular , Fibra de Carbono
5.
Res Sq ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398289

RESUMO

The contractility of cardiac muscle is greatly affected by preload via the Frank-Starling Mechanism (FSM). It is based on the preload-dependent activation of sarcomeres - the elementary contractile units in muscle cells. Recent findings show a natural variability in sarcomere length (SL) in resting cardiomyocytes that, moreover, is altered in an actively contracting myocyte. SL variability may contribute to the FSM but it remains unresolved whether the change in the SL variability is regulated by activation process per se or simply by changes in cell stretch, i.e. average SL. To separate the roles of activation and SL, we characterized SL variability in isolated fully relaxed rat ventricular cardiomyocytes ( n = 12) subjected to a longitudinal stretch with the carbon fiber (CF) technique. Each cell was tested in three states: without CF attachment (control, no preload), with CF attachment without stretch, and with CF attachment and ~ 10% stretch of initial SL. The cells were imaged by transmitted light microscopy to retrieve and analyze individual SL and SL variability off-line by multiple quantitative measures like coefficient of variation or median absolute deviation. We found that CF attachment without stretch did not affect the extent of SL variability and averaged SL. In stretched myocytes, the averaged SL significantly increased while the SL variability remained unchanged. This result clearly indicates that the non-uniformity of individual SL is not sensitive to the average SL itself in fully relaxed myocytes. We conclude that SL variability per se does not contribute to the FSM in the heart.

6.
Antioxidants (Basel) ; 12(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37508012

RESUMO

Muscle fatigue is a common symptom induced by exercise. A reversible loss of muscle force is observed with variable rates of recovery depending on the causes or underlying mechanisms. It can not only affect locomotion muscles, but can also affect the heart, in particular after intense prolonged exercise such as marathons and ultra-triathlons. The goal of our study was to explore the effect of four different natural extracts with recognized antioxidant properties on the contractile function of skeletal (locomotion) and cardiac muscles after a prolonged exhausting exercise. Male Wistar rats performed a bout of exhausting exercise on a treadmill for about 2.5 h and were compared to sedentary animals. Some rats received oral treatment of a natural extract (rosemary, buckwheat, Powergrape®, or rapeseed) or the placebo 24 h and 1 h before exercise. Experiments were performed 30 min after the race and after 7 days of recovery. All natural extracts had protective effects both in cardiac and skeletal muscles. The extent of protection was different depending on muscle type and the duration post-exercise (just after and after one-week recovery), including antiarrhythmic effect and anti-diastolic dysfunction for the heart, and faster recovery of contractility for the skeletal muscles. Moreover, the muscular protective effect varied between natural extracts. Our study shows that an acute antioxidant supplementation can protect against acute abnormal endogenous ROS toxicity, induced here by prolonged exhausting exercise.

7.
Am J Respir Cell Mol Biol ; 69(2): 230-241, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37163759

RESUMO

Chronic obstructive pulmonary disease (COPD) is a clinical entity of increasing significance. COPD involves abnormalities of the airways and, in emphysema, parenchymal pulmonary destruction. Cardiovascular disease has emerged as a significant comorbidity to COPD. Heart failure with preserved ejection fraction (HFpEF) appears to be particularly associated with COPD-emphysema. Traditional treatments have shown limited efficacy in improving COPD-associated HFpEF. This lack of therapeutic efficacy highlights the need to identify potential mechanisms that link COPD-emphysema to HFpEF. Therefore, we aimed to study the delayed cardiac physiological impacts in a rat model with acute exacerbated emphysema. Emphysema was induced by four weekly 4 units elastase (ELA) intratracheal pulmonary instillations and exacerbation by one final additional lipolysaccharide (LPS) instillation in male Wistar rats. At 5 weeks after the ELA and LPS exposure, in vivo and ex vivo pulmonary and cardiac measurements were performed. Experimental exacerbated emphysema resulted in decreased pulmonary function and exercise intolerance. Histological analysis revealed parenchymal pulmonary destruction without signs of inflammation or cardiac fibrosis. In vivo cardiac functional analysis revealed diastolic dysfunction and tachycardia. Ex vivo analysis revealed a cellular cardiomyopathy with decreased myofilament Ca2+ sensitivity, cross-bridge cycling kinetics, and increased adrenergic PKA (protein kinase A)-dependent phosphorylation of troponin-I. Experimental exacerbated emphysema was associated with exercise intolerance that appeared to be secondary to increased ß-adrenergic tone and subsequent cardiac myofilament dysfunction. A ß1-receptor antagonist treatment (bisoprolol) started 24 hours after ELA-LPS instillation prevented in vivo and ex vivo diastolic dysfunction. These results suggest that novel treatment strategies targeted to the cardiac myofilament may be beneficial to combat exacerbated emphysema-associated HFpEF.


Assuntos
Cardiomiopatias , Enfisema , Insuficiência Cardíaca , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Masculino , Ratos , Animais , Insuficiência Cardíaca/complicações , Lipopolissacarídeos , Volume Sistólico/fisiologia , Ratos Wistar , Enfisema Pulmonar/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Cardiomiopatias/complicações
8.
J Gen Physiol ; 155(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37102986

RESUMO

Cardiac hypertrophy is associated with diastolic heart failure (DHF), a syndrome in which systolic function is preserved but cardiac filling dynamics are depressed. The molecular mechanisms underlying DHF and the potential role of altered cross-bridge cycling are poorly understood. Accordingly, chronic pressure overload was induced by surgically banding the thoracic ascending aorta (AOB) in ∼400 g female Dunkin Hartley guinea pigs (AOB); Sham-operated age-matched animals served as controls. Guinea pigs were chosen to avoid the confounding impacts of altered myosin heavy chain (MHC) isoform expression seen in other small rodent models. In vivo cardiac function was assessed by echocardiography; cardiac hypertrophy was confirmed by morphometric analysis. AOB resulted in left ventricle (LV) hypertrophy and compromised diastolic function with normal systolic function. Biochemical analysis revealed exclusive expression of ß-MHC isoform in both sham control and AOB LVs. Myofilament function was assessed in skinned multicellular preparations, skinned single myocyte fragments, and single myofibrils prepared from frozen (liquid N2) LVs. The rates of force-dependent ATP consumption (tension-cost) and force redevelopment (Ktr), as well as myofibril relaxation time (Timelin) were significantly blunted in AOB, indicating reduced cross-bridge cycling kinetics. Maximum Ca2+ activated force development was significantly reduced in AOB myocytes, while no change in myofilament Ca2+ sensitivity was observed. Our results indicate blunted cross-bridge cycle in a ß-MHC small animal DHF model. Reduced cross-bridge cycling kinetics may contribute, at least in part, to the development of DHF in larger mammals, including humans.


Assuntos
Insuficiência Cardíaca Diastólica , Insuficiência Cardíaca , Humanos , Cobaias , Feminino , Animais , Insuficiência Cardíaca Diastólica/metabolismo , Cálcio/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Miofibrilas/metabolismo , Cinética , Cardiomegalia , Isoformas de Proteínas/metabolismo , Insuficiência Cardíaca/metabolismo , Mamíferos/metabolismo
9.
Elife ; 122023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36649053

RESUMO

The rod-shaped adult cardiomyocyte (CM) harbors a unique architecture of its lateral surface with periodic crests, relying on the presence of subsarcolemmal mitochondria (SSM) with unknown role. Here, we investigated the development and functional role of CM crests during the postnatal period. We found in rodents that CM crest maturation occurs late between postnatal day 20 (P20) and P60 through both SSM biogenesis, swelling and crest-crest lateral interactions between adjacent CM, promoting tissue compaction. At the functional level, we showed that the P20-P60 period is dedicated to the improvement of relaxation. Interestingly, crest maturation specifically contributes to an atypical CM hypertrophy of its short axis, without myofibril addition, but relying on CM lateral stretching. Mechanistically, using constitutive and conditional CM-specific knock-out mice, we identified ephrin-B1, a lateral membrane stabilizer, as a molecular determinant of P20-P60 crest maturation, governing both the CM lateral stretch and the diastolic function, thus highly suggesting a link between crest maturity and diastole. Remarkably, while young adult CM-specific Efnb1 KO mice essentially exhibit an impairment of the ventricular diastole with preserved ejection fraction and exercise intolerance, they progressively switch toward systolic heart failure with 100% KO mice dying after 13 months, indicative of a critical role of CM-ephrin-B1 in the adult heart function. This study highlights the molecular determinants and the biological implication of a new late P20-P60 postnatal developmental stage of the heart in rodents during which, in part, ephrin-B1 specifically regulates the maturation of the CM surface crests and of the diastolic function.


Assuntos
Efrina-B1 , Miócitos Cardíacos , Animais , Camundongos , Diástole , Miofibrilas
10.
J Gen Physiol ; 155(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36695814

RESUMO

Sarcomere length (SL) and its variation along the myofibril strongly regulate integrated coordinated myocyte contraction. It is therefore important to obtain individual SL properties. Optical imaging by confocal fluorescence (for example, using ANEPPS) or transmitted light microscopy is often used for this purpose. However, this allows for the visualization of structures related to Z-disks only. In contrast, second-harmonic generation (SHG) microscopy visualizes A-band sarcomeric structures directly. Here, we compared averaged SL and its variability in isolated relaxed rat cardiomyocytes by imaging with ANEPPS and SHG. We found that SL variability, evaluated by several absolute and relative measures, is two times smaller using SHG vs. ANEPPS, while both optical methods give the same average (median) SL. We conclude that optical methods with similar optical spatial resolution provide valid estimations of average SL, but the use of SHG microscopy for visualization of sarcomeric A-bands may be the "gold standard" for evaluation of SL variability due to the absence of optical interference between the sarcomere center and non-sarcomeric structures. This contrasts with sarcomere edges where t-tubules may not consistently colocalize to Z-disks. The use of SHG microscopy instead of fluorescent imaging can be a prospective tool to map sarcomere variability both in vitro and in vivo conditions and to reveal its role in the functional behavior of living myocardium.


Assuntos
Miócitos Cardíacos , Miosinas , Sarcômeros , Microscopia de Geração do Segundo Harmônico , Animais , Ratos , Miócitos Cardíacos/fisiologia , Miofibrilas , Miosinas/química , Sarcômeros/fisiologia
11.
J Sport Health Sci ; 12(4): 477-485, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35908728

RESUMO

BACKGROUND: Strength-trained athletes using anabolic androgenic steroids (AAS) have left ventricular (LV) hypertrophy and myocardial fibrosis that can lead to sudden cardiac death. A similar feature was described in athletes with hypertrophic cardiomyopathy (HCM), which complicates the diagnosis for clinicians. In this context, we aimed to compare the LV function of the 2 populations by measuring global and regional strain and myocardial work using speckle-tracking imaging. METHODS: Twenty-four strength-trained asymptomatic athletes using AAS (AAS-Athletes), 22 athletes diagnosed with HCM (HCM-Athletes), and 20 healthy control athletes (Ctrl-Athletes) underwent a resting echocardiography to assess LV function. We evaluated LV global and regional strains and myocardial work, with an evaluation of the constructive work (CW), wasted work, and work efficiency (WE). RESULTS: Compared to Ctrl-Athletes, both AAS-Athletes and HCM-Athletes had a thicker interventricular septum, with majored values in HCM-Athletes. LV strain was reduced in AAS-Athletes and even more in HCM-Athletes. Consequently, global WE was significantly diminished in both AAS and HCM-Athletes (93% ± 2% in Ctrl-Athletes, 90% ± 4% in AAS-Athletes, and 90% ± 5% in HCM-Athletes (mean ± SD); p < 0.05). Constructive work and WE regional analysis showed specific alterations, with the basal septal segments preferentially affected in AAS-Athletes, and both septal and apical segments affected in HCM-Athletes. CONCLUSION: The regional evaluation of myocardial work reported specific alterations of the major LV hypertrophy induced by the regular use of AAS compared to the LV hypertrophy due to HCM. This finding could help clinicians to differentiate between these 2 forms of pathological hypertrophy.


Assuntos
Esteróides Androgênicos Anabolizantes , Cardiomiopatia Hipertrófica , Humanos , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/patologia , Hipertrofia Ventricular Esquerda/complicações , Ecocardiografia/métodos , Atletas
12.
Front Physiol ; 13: 857471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444559

RESUMO

Cardiomyocytes contract keeping their sarcomere length (SL) close to optimal values for force generation. Transmural heterogeneity in SL across the ventricular wall coordinates the contractility of the whole-ventricle. SL heterogeneity (variability) exists not only at the tissue (macroscale) level, but also presents at the level of a single cardiomyocyte (microscale level). However, transmural differences in intracellular SL variability and its possible dependence on the state of contraction (e.g. end-diastole or end-systole) have not been previously reported. In the present study, we studied three aspects of sarcomere-to-sarcomere variability in intact cardiomyocytes isolated from the left ventricle of healthy guinea-pig: 1) transmural differences in SL distribution between subepi- (EPI) and subendocardial (ENDO) cardiomyocytes; 2) the dependence of intracellular variability in SL upon the state of contraction; 3) local differences in SL variability, comparing SL distributions between central and peripheral regions within the cardiomyocyte. To characterize the intracellular variability of SL, we used different normality tests for the assessment of SL distributions, as well as nonparametric coefficients to quantify the variability. We found that individual SL values in the end-systolic state of contraction followed a normal distribution to a lesser extent as compared to the end-diastolic state of contraction (∼1.3-fold and ∼1.6-fold in ENDO and EPI, respectively). The relative and absolute coefficients of sarcomere-to-sarcomere variability in end-systolic SL were significantly greater (∼1.3-fold) as compared to end-diastolic SL. This was independent of both the transmural region across the left ventricle and the intracellular region within the cardiomyocyte. We conclude that the intracellular variability in SL, which exists in normal intact guinea-pig cardiomyocytes, is affected by the contractile state of the myocyte. This phenomenon may play a role in inter-sarcomere communication in the beating heart.

13.
Int J Cardiol ; 354: 75-83, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35167907

RESUMO

BACKGROUND: This study aimed to detect late sub-clinical patterns of cardiac dysfunction using speckle tracking echocardiography (STE) in children with cancer remission more than 12 months after the end of anthracycline treatment. METHODS: This prospective controlled study enrolled 196 children, 98 of which had been treated with anthracyclines (mean age 10.8 ± 3.6 years; 51% female) and 98 were age- and gender-matched healthy subjects in a 1:1 case-control design. Conventional echocardiographic variables were collected for left ventricle (LV) and right ventricle (RV). STE analyses were performed in the LV longitudinal, radial, and circumferential displacements and in the RV free wall longitudinal displacement. The association between LV global longitudinal strain (GLS) and the main clinical and biological parameters was evaluated. RESULTS: After a mean time interval of 5.1 ± 3.2 years since the end of chemotherapy (mean cumulative anthracycline dose of 192 ± 96 mg/m2), conventional echocardiographic measures were normal. GLS was significantly decreased in the anthracycline group (-19.1% vs. -21.5%, P < 0.0001), with a higher proportion of children with abnormal values (Z-score < -2 in 18.6% vs. 1.0%, P < 0.0001). No association was found between GLS and clinical or biological parameters. Circumferential strain was significantly worse in the anthracycline group (-16.8% vs. -19.4%, P < 0.0001), and radial strain significantly better (+51.4% vs. +35.9%, P < 0.0001). RV conventional echocardiography and STE parameters were normal and not different between anthracycline and control groups. CONCLUSIONS: The existence of a modified LV strain despite normal LV function in children treated with anthracyclines represents an important perspective for cardiomyopathy surveillance in childhood cancer survivors. Clinical Trial Registration -ClinicalTrials.gov Identifier: NCT02893787.


Assuntos
Neoplasias , Disfunção Ventricular Esquerda , Adolescente , Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxicidade/diagnóstico por imagem , Cardiotoxicidade/etiologia , Criança , Estudos Transversais , Ecocardiografia , Feminino , Humanos , Masculino , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Estudos Prospectivos , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/tratamento farmacológico , Função Ventricular Esquerda
14.
Angiogenesis ; 25(3): 275-277, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35013842

RESUMO

Chronic obstructive pulmonary disease (COPD) patients have an increased risk of cardiovascular disease. Muscle biopsies have revealed that the muscle vasculature in COPD patients was characterized by a capillary rarefaction with reduced pericyte coverage. Thus, an imbalance of the plasma Angiopoietin-1 / Angiopoietin-2 (Ang2/Ang1) ratio could constitute a non-invasive marker of the muscle vascular impairment. In 14 COPD patients (65.5±5.1-year-old) and 7 HC (63.3±5.8-year-old), plasma samples were obtained at 3 time-points: before, after 5 weeks (W5), and after 10 weeks (W10) of exercise training. COPD patients showed a muscle capillary rarefaction at baseline with a reduced capillary coverage at W5 and W10. The plasma Ang2/Ang1 ratio was significantly higher in COPD patients vs. HC during the training (Group: p=0.01). The plasma Ang2/Ang1 ratio was inversely correlated with the pericyte coverage index regardless of the time period W0 (r=-0.51; p=0.02), W5 (r=-0.48; p=0.04), and W10 (r=-0.61; p<0.01). Last, in ECFC/MSC co-cultures exposed to the W10 serum from COPD patients and HC, the plasma Ang2/Ang1 at W10 were inversely correlated with calponin staining (r=-0.64. p=0.01 and r= 0.71. p<0.01, Fig. 1B), in line with a role of this plasma Ang2/Ang1 in the MSC differentiation into pericytes. Altogether, plasma Ang2/Ang1 ratio could constitute a potential marker of the vascular impairment in COPD patients.


Assuntos
Angiopoietina-1 , Angiopoietina-2 , Rarefação Microvascular , Doença Pulmonar Obstrutiva Crônica , Idoso , Angiopoietina-1/sangue , Angiopoietina-2/sangue , Biomarcadores/sangue , Humanos , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico
15.
Cardiovasc Drugs Ther ; 36(5): 793-803, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34138361

RESUMO

CONTEXT: Duchenne muscular dystrophy (DMD) is associated with a progressive alteration in cardiac function. OBJECTIVE: The aim of this study was to detect early cardiac dysfunction using the high sensitive two-dimensional speckle-tracking echocardiography (2D strain) in mdx mouse model and to investigate the potential preventive effects of the S107 ryanodine receptor (RyR2) stabilizer on early onset of DMD-related cardiomyopathy. METHODS AND RESULTS: Conventional echocardiography and global and segmental left ventricle (LV) 2D strains were assessed in male mdx mice and control C57/BL10 mice from 2 to 12 months of age. Up to 12 months of age, mdx mice showed preserved myocardial function as assessed by conventional echocardiography. However, global longitudinal, radial, and circumferential LV 2D strains significantly declined in mdx mice compared to controls from the 9 months of age. Segmental 2D strain analysis found a predominant alteration in posterior, inferior, and lateral LV segments, with a more marked impairment with aging. Then, mdx mice were treated with S107 in the drinking water at a dose of 250 mg/L using two different protocols: earlier therapy from 2 to 6 months of age and later therapy from 6 to 9 months of age. The treatment with S107 was efficient only when administered earlier in very young animals (from 2 to 6 months of age) and prevented the segmental alterations seen in non-treated mdx mice. CONCLUSIONS: This is the first animal study to evaluate the therapeutic effect of a drug targeting early onset of DMD-related cardiomyopathy, using 2D strain echocardiography. Speckle-tracking analyses revealed early alterations of LV posterior segments that could be prevented by 4 months of RyR2 stabilization.


Assuntos
Cardiomiopatias , Água Potável , Distrofia Muscular de Duchenne , Animais , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/tratamento farmacológico , Canal de Liberação de Cálcio do Receptor de Rianodina
16.
Int J Cardiovasc Imaging ; 38(1): 79-89, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34905152

RESUMO

Prognosis of Duchenne muscular dystrophy (DMD) is related to cardiac dysfunction. Two dimensional-speckle tracking echocardiography (2D-STE) has recently emerged as a non-invasive functional biomarker for early detection of DMD-related cardiomyopathy. This study aimed to determine, in DMD children, the existence of left ventricle (LV) dyssynchrony using 2D-STE analysis. This prospective controlled study enrolled 25 boys with DMD (mean age 11.0 ± 3.5 years) with normal LV ejection fraction and 50 age-matched controls. Three measures were performed to assess LV mechanical dyssynchrony: the opposing-wall delays (longitudinal and radial analyses), the modified Yu index, and the time-to-peak delays of each segment. Feasibility and reproducibility of 2D-STE dyssynchrony were evaluated. All three mechanical dyssynchrony criteria were significantly higher in the DMD group than in healthy subjects: (1) opposing-wall delays in basal inferoseptal to basal anterolateral segments (61.4 ± 45.3 ms vs. 18.3 ± 50.4 ms, P < 0.001, respectively) and in mid inferoseptal to mid anterolateral segments (58.6 ± 35.3 ms vs. 42.4 ± 36.4 ms, P < 0.05, respectively), (2) modified Yu index (33.3 ± 10.1 ms vs. 28.5 ± 8.1 ms, P < 0.05, respectively), and (3) most of time-to-peak values, especially in basal and mid anterolateral segments. Feasibility was excellent and reliability was moderate to excellent, with ICC values ranging from 0.49 to 0.97. Detection of LV mechanical dyssynchrony using 2D-STE analysis is an easily and reproducible method in paediatric DMD. The existence of an early LV mechanical dyssynchrony visualized using 2D-STE analysis in children with DMD before the onset of cardiomyopathy represents a perspective for future paediatric drug trials in the DMD-related cardiomyopathy prevention.Clinical Trial Registration Clinicaltrials.gov NCT02418338. Post-hoc study, registered on April 16, 2015.


Assuntos
Distrofia Muscular de Duchenne , Disfunção Ventricular Esquerda , Adolescente , Criança , Ecocardiografia , Ventrículos do Coração/diagnóstico por imagem , Humanos , Masculino , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/diagnóstico por imagem , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/etiologia
17.
J Am Coll Cardiol ; 78(24): 2439-2453, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34886965

RESUMO

BACKGROUND: Duchenne muscular dystrophy is associated with progressive deterioration in left ventricular (LV) function. The golden retriever muscular dystrophy (GRMD) dog model recapitulates the pathology and clinical manifestations of Duchenne muscular dystrophy. Importantly, they develop progressive LV dysfunction starting at early age. OBJECTIVES: The authors tested the cardioprotective effect of chronic administration of the ARM036, a small molecule that stabilizes the closed conformation of the cardiac sarcoplasmic reticulum ryanodine receptor/calcium release channel (RyR2) in young GRMD-dogs. METHODS: Two-month-old GRMD-dogs were treated with ARM036 or placebo for 4 months. Healthy-dogs of the same genetic background served as controls. Cardiac function was evaluated by conventional and 2-dimensional speckle-tracking echocardiography. Cardiac cellular and molecular analyses were performed at 6 months old. RESULTS: Conventional echocardiography showed normal LV dimensions and ejection fraction in 6-month-old GRMD dogs. Interestingly, 2-dimensional speckle-tracking echocardiography revealed decreased global longitudinal strain and the presence of hypokinetic segments in placebo-treated GRMD dogs. Single-channel measurements revealed higher RyR2 open probability at low resting Ca2+ in GRMD cardiomyocytes than in controls. ARM036 prevented those in vivo and in vitro dysfunctions in GRMD dogs. Myofilament Ca2+-sensitivity was increased in permeabilized GRMD cardiomyocytes at short sarcomere length. ARM036 had no effect on this parameter. Cross-bridge cycling kinetics were altered in GRMD myocytes and recovered with ARM036 treatment, which coincided with the level of myosin binding protein-C-S glutathionylation. CONCLUSIONS: GRMD-dogs exhibit early LV dysfunction associated with altered myofilament contractile properties. These abnormalities were prevented pharmacologically by stabilizing RyR2 with ARM036.


Assuntos
Distrofia Muscular de Duchenne/complicações , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda/fisiologia , Animais , Biópsia , Modelos Animais de Doenças , Cães , Ecocardiografia , Distrofia Muscular de Duchenne/diagnóstico , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miofibrilas/metabolismo , Miofibrilas/patologia , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia
18.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068508

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating condition shortening the lifespan of young men. DMD patients suffer from age-related dilated cardiomyopathy (DCM) that leads to heart failure. Several molecular mechanisms leading to cardiomyocyte death in DMD have been described. However, the pathological progression of DMD-associated DCM remains unclear. In skeletal muscle, a dramatic decrease in stem cells, so-called satellite cells, has been shown in DMD patients. Whether similar dysfunction occurs with cardiac muscle cardiovascular progenitor cells (CVPCs) in DMD remains to be explored. We hypothesized that the number of CVPCs decreases in the dystrophin-deficient heart with age and disease state, contributing to DCM progression. We used the dystrophin-deficient mouse model (mdx) to investigate age-dependent CVPC properties. Using quantitative PCR, flow cytometry, speckle tracking echocardiography, and immunofluorescence, we revealed that young mdx mice exhibit elevated CVPCs. We observed a rapid age-related CVPC depletion, coinciding with the progressive onset of cardiac dysfunction. Moreover, mdx CVPCs displayed increased DNA damage, suggesting impaired cardiac muscle homeostasis. Overall, our results identify the early recruitment of CVPCs in dystrophic hearts and their fast depletion with ageing. This latter depletion may participate in the fibrosis development and the acceleration onset of the cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/genética , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Envelhecimento/genética , Envelhecimento/patologia , Animais , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Dano ao DNA/genética , Modelos Animais de Doenças , Distrofina/deficiência , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos mdx/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia
19.
Bioinformatics ; 37(22): 4209-4215, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34048539

RESUMO

MOTIVATION: Cardiomyocytes derived from stem cells are closely followed, notably since the discovery in 2007 of human induced pluripotent stem cells (hiPSC). Cardiomyocytes (hiPSC-CM) derived from hiPSC are indeed more and more used to study specific cardiac diseases as well as for developing novel applications such as drug safety experiments. Robust dedicated tools to characterize hiPSC-CM are now required. The hiPSC-CM morphology constitutes an important parameter since these cells do not demonstrate the expected rod shape, characteristic of native human cardiomyocytes. Similarly, the presence, the density and the organization of contractile structures would be a valuable parameter to study. Precise measurements of such characteristics would be useful in many situations: for describing pathological conditions, for pharmacological screens or even for studies focused on the hiPSC-CM maturation process. RESULTS: For this purpose, we developed a MATLAB based image analysis toolbox, which gives accurate values for cellular morphology parameters as well as for the contractile cell organization. AVAILABILITY AND IMPLEMENTATION: To demonstrate the power of this automated image analysis, we used a commercial maturation medium intended to promote the maturation status of hiPSC-CM, and compare the parameters with the ones obtained with standard culture medium, and with freshly dissociated mouse cardiomyocytes. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Animais , Camundongos , Células Cultivadas
20.
Circulation ; 143(6): 566-580, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33272024

RESUMO

BACKGROUND: Ischemic cardiovascular diseases, particularly acute myocardial infarction (MI), is one of the leading causes of mortality worldwide. Indoleamine 2, 3-dioxygenase 1 (IDO) catalyzes 1 rate-limiting step of L-tryptophan metabolism, and emerges as an important regulator of many pathological conditions. We hypothesized that IDO could play a key role to locally regulate cardiac homeostasis after MI. METHODS: Cardiac repair was analyzed in mice harboring specific endothelial or smooth muscle cells or cardiomyocyte or myeloid cell deficiency of IDO and challenged with acute myocardial infarction. RESULTS: We show that kynurenine generation through IDO is markedly induced after MI in mice. Total genetic deletion or pharmacological inhibition of IDO limits cardiac injury and cardiac dysfunction after MI. Distinct loss of function of IDO in smooth muscle cells, inflammatory cells, or cardiomyocytes does not affect cardiac function and remodeling in infarcted mice. In sharp contrast, mice harboring endothelial cell-specific deletion of IDO show an improvement of cardiac function as well as cardiomyocyte contractility and reduction in adverse ventricular remodeling. In vivo kynurenine supplementation in IDO-deficient mice abrogates the protective effects of IDO deletion. Kynurenine precipitates cardiomyocyte apoptosis through reactive oxygen species production in an aryl hydrocarbon receptor-dependent mechanism. CONCLUSIONS: These data suggest that IDO could constitute a new therapeutic target during acute MI.


Assuntos
Células Endoteliais/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/uso terapêutico , Cinurenina/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Animais , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/farmacologia , Cinurenina/farmacologia , Camundongos , Infarto do Miocárdio/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...