Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10714, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400603

RESUMO

The profile of secondary metabolites in ten members of tribe Mentheae (Nepetoideae, Lamiaceae) from Peru by liquid chromatography associated with high resolution mass spectrometry, is presented. Salvianolic acids and their precursors were found, particularly rosmarinic acid, caffeic acid ester derivatives, as well as a diversity of free and glycosylated flavonoids as main substances. At all, 111 structures were tentatively identified.


Assuntos
Lamiaceae , Lamiaceae/química , Peru , Cromatografia Líquida , Espectrometria de Massas , Compostos Fitoquímicos/química , Cromatografia Líquida de Alta Pressão
2.
J Nat Prod ; 86(4): 683-693, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36913505

RESUMO

Despite their relatively poorly investigated phytochemistry, species of the genus Chuquiraga are widely commercialized. The present study reports the use of a high-resolution liquid chromatography-mass spectrometry-based metabolomics approach coupled with exploratory and supervised multivariate statistical analyses for species classification and chemical marker identification of four species of Chuquiraga (C. jussieui, C. weberbaueri, C. spinosa, and Chuquiraga sp.) from Ecuador and Peru. Based on these analyses, a high percentage of correct classifications (87% to 100%) allowed the prediction of the taxonomic identity of Chuquiraga species. Through the metabolite selection process, several key constituents with the potential to be chemical markers were identified. Samples of C. jussieui displayed alkyl glycosides and triterpenoid glycosides as discriminating metabolites, while Chuquiraga sp. displayed high concentrations of p-hydroxyacetophenone, p-hydroxyacetophenone 4-O-glucoside, p-hydroxyacetophenone 4-O-(6-O-apiosyl)-glucoside, and quinic acid ester derivatives as the main metabolites. Caffeic acid was characteristic for C. weberbaueri samples, whereas C. spinosa displayed higher concentrations of the following new phenylpropanoid ester derivatives: 2-O-caffeoyl-4-hydroxypentanedioic acid (24), 2-O-p-coumaroyl-4-hydroxypentanedioic acid (34), 2-O-feruloyl-4-hydroxypentanedioic acid (46), 2,4-O-dicaffeoylpentanedioic acid (71), and 2-O-caffeoyl-4-O-feruloylpentanedioic acid (77).


Assuntos
Asteraceae , Flavonoides/análise , Glicosídeos/análise , Espectrometria de Massas , Glucosídeos , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão , Metabolômica
3.
Naturwissenschaften ; 109(2): 18, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35226184

RESUMO

Red propolis is a substance produced by bees by mixing resins from plants with wax, oils, and other secretions to protect the hive against natural enemies. Dalbergia ecastaphyllum (L.) Taub. (Fabaceae) is the primary botanical source of the Brazilian red propolis, where bees Apis mellifera L. collect a reddish resin from the stems to produce propolis. This species occurs in coastal dune and mangrove ecosystems, where local beekeepers install their beehives for propolis production. The induction of propolis production was virtually unknown. Previous reports and field evidence suggested that the reddish resin available in D. ecastaphyllum stems was not produced spontaneously but induced by the presence of a parasitic insect that feeds on the plant's stems. Research in the apiaries of the beekeepers' association of Canavieiras, Bahia, Brazil, led to the capture of a jewel beetle of an unknown species of the genus Agrilus Curtis (Buprestidae). It was confirmed that this jewel beetle is a red propolis production inductor. The adult and immature of this new species, Agrilus propolis Migliore, Curletti, and Casari sp. nov. are here described and illustrated. Behavioral information on the biology and chemical ecology confirms that the reddish resin of D. ecastaphyllum is directly related to the beetle attack and only occurs when Agrilus propolis sp. nov. adults emerge from the plant stem. This information is very important for Brazilian propolis producers interested in expanding red propolis production, which can have favorable effects on the economy of mangrove communities, promoting income generation, creating new business opportunities, and helping to sustain local communities and families.


Assuntos
Besouros , Dalbergia , Própole , Animais , Brasil , Dalbergia/química , Ecossistema , Própole/química , Própole/farmacologia
4.
J Sci Food Agric ; 102(10): 4345-4354, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35066883

RESUMO

BACKGROUND: Propolis, produced by honey bees, is used around the world, displaying several corroborated biological activities. Brazil is one of the leading producers of propolis, with a great diversity of types, each with a characteristically chemical fingerprint influenced by the flora of the local region. The secondary metabolite's composition of propolis strongly impacts its biological properties, and its chemical characterization is of great importance for its quality control. Several chromatographic techniques have been applied to characterize propolis, highlighting the extraction of its volatiles and its analysis through gas chromatography. Fourteen Brazilian propolis samples collected in four states, including brown, green and red propolis types, were chemically characterized using the automated direct thermal desorption-gas chromatography-mass spectrometry (DTD-GC-MS). RESULTS: Red propolis type was characterized by acyclic saturated hydrocarbons, fatty alcohols, terpenes, and phenylpropanoids as nonacosane, α-copaene, ß-amyrin acetate, anethole, and 7-O-methylvestitol. Brown propolis presented hydrocarbons, monoterpenes, and sesquiterpenes, as α-pinene and α-bisabolol. Brazilian green propolis presented polycyclic aromatic hydrocarbons and sesquiterpenes, including 1-methyl-octahydroanthracene, 2,5-dimethyl-γ-oxo-benzenebutanoic acid, nerolidol, and spathulenol. Principal component analysis (PCA) was performed, allowing for clustering brown and red propolis types, indicating a divergence with the chemical composition of the green propolis samples. The hierarchical cluster analysis (HCA) allowed the chemical fingerprint of each propolis type to be differentiated. CONCLUSION: Red propolis was characterized by sesquiterpenes, pterocarpans, and isoflavans; brown propolis was characterized by hydrocarbons, aldehydes, and monoterpenes, while green propolis samples were characterized by the presence of polycyclic aromatic hydrocarbons, sesquiterpenes, and naphthalene derivatives. © 2022 Society of Chemical Industry.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Própole , Sesquiterpenos , Animais , Brasil , Cromatografia Gasosa-Espectrometria de Massas/métodos , Monoterpenos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Própole/química , Sesquiterpenos/análise
5.
J Pharm Biomed Anal ; 198: 114029, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33756382

RESUMO

Propolis is a natural product produced from the interaction between bees and plants. Brazilian red propolis results from Apis mellifera collection of resins from two plant species, being Dalbergia ecastaphyllum(L.) Taub, Fabaceae, the primary botanical source, containing isoflavonoids and other characteristic phenolic compounds. Several biological activities of Brazilian red propolis and their isolated compounds have been described in the literature. However, to our knowledge, there are no validated analytical methods for the analysis and standardization of products derived from this type of propolis reported in the literature. We developed a reverse-phase high-performance liquid chromatography analytical method for the detection and quantification of nine red propolis chemical markers: liquiritigenin, calycosin, isoliquiritigenin,formononetin, vestitol, neovestitol, medicarpin, biochanin A, and 7-O-methylvestitol, present in Brazilian red propolis extracts and D. ecastaphyllum. The developed method was also applied to the analyses of D. ecastaphyllum samples and seasonal analysis of Brazilian red propolis. Good detection response, linearity, precision, and robustness were obtained by the method, being reliable for the quality control of Brazilian red propolis extracts, raw propolis, plant material, and their derived products. The red propolis chemical markers were present in D. ecastaphyllum stems at lower concentrations. The seasonal analysis of Brazilian red propolis extract showed higher phenolic compound concentration on periods of the rainy season with higher humidity and lower solar radiation.


Assuntos
Dalbergia , Própole , Animais , Abelhas , Brasil , Cromatografia Líquida de Alta Pressão , Fenóis
6.
Chem Res Toxicol ; 34(4): 1024-1033, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33720704

RESUMO

Propolis is one of the most widely used products in traditional medicine. One of the most prominent types of Brazilian propolis is the red one, whose primary botanical source is Dalbergia ecastaphyllum (L.) Taub. Despite the potential of Brazilian red propolis for developing new products with pharmacological activity, few studies guarantee safety in its use. The objective of this study was the evaluation of the possible toxic effects of Brazilian red propolis and D. ecastaphyllum, as well as the cytotoxicity assessment of the main compounds of red propolis on tumoral cell lines. Hydroalcoholic extracts of the Brazilian red propolis (BRPE) and D. ecastaphyllum stems (DSE) and leaves (DLE) were prepared and chromatographed for isolation of the major compounds. RP-HPLC-DAD was used to quantify the major compounds in the obtained extracts. The XTT assay was used to evaluate the cytotoxic activity of the extracts in the human fibroblast cell line (GM07492A). The results revealed IC50 values of 102.7, 143.4, and 253.1 µg/mL for BRPE, DSE, and DLE, respectively. The extracts were also evaluated for their genotoxic potential in the micronucleus assay in Chinese hamster lung fibroblasts cells (V79), showing the absence of genotoxicity. The BRPE was investigated for its potential in vivo toxicity in the zebrafish model. Concentrations of 0.8-6.3 mg/L were safe for the animals, with a LC50 of 9.37 mg/L. Of the 11 compounds isolated from BRPE, medicarpin showed a selective cytotoxic effect against the HeLa cell line. These are the initial steps to determine the toxicological potential of Brazilian red propolis.


Assuntos
Dalbergia/química , Extratos Vegetais/farmacologia , Própole/farmacologia , Animais , Brasil , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Própole/química , Própole/isolamento & purificação , Peixe-Zebra
7.
Metabolites ; 10(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066019

RESUMO

Smallanthus sonchifolius (yacon) is an edible tuberous Andean shrub that has been included in the diet of indigenous people since before recorded history. The nutraceutical and medicinal properties of yacon are widely recognized, especially for the improvement of hyperglycemic disorders. However, the chemical diversity of the main bioactive series of caffeic acid esters has not been explored in detail. In this metabolomics study, we applied the latest tools to facilitate the targeted isolation of new caffeic acid esters. Using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), we analyzed extracts from different organs (roots, vascular tissues of the stems, stem epidermis, leaves, bracts, and ray flowers) and followed a feature-based molecular networking approach to characterize the structural diversity of caffeic acid esters and recognize new compounds. The analysis identified three potentially new metabolites, one of them confirmed by isolation and full spectroscopic/spectrometric assignment using nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS), and MS/MS. This metabolite (5-O-caffeoyl-2,7-anhydro-d-glycero-ß-d-galacto-oct-2-ulopyranosonic acid), along with eight known caffeic acid esters, was isolated from the roots and stems. Furthermore, based on detailed tandem MS analyses, we suggest that the two isomeric monocaffeoyl-2,7-anhydro-2-octulopyranosonic acids found in yacon can be reliably distinguished based on their characteristic MS2 and MS3 spectra. The outcome of the current study confirms the utility of feature-based molecular networking as a tool for targeted isolation of previously undescribed metabolites and reveals the full diversity of potentially bioactive metabolites from S. sonchifolius.

8.
Nat Prod Res ; 30(23): 2720-2725, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26878242

RESUMO

The occurrence of chromanone derivatives has been noticed as a distinctive feature of the genus Calophyllum (Calophyllaceae). Previous studies have demonstrated that the extract of the stem bark of Calophyllum brasiliense and its chromanone-rich fractions show anti-ulcer activity in murine gastric ulcer models. In this work, brasiliensic and isobrasiliensic acids, the two main compounds of the n-hexane extract of the stem bark extract of C. brasiliense, were isolated by flash chromatography using silica gel impregnated with silver nitrate and their structures were elucidated by NMR techniques and mass spectrometry. 13C NMR data is available for the first time for both compounds. Brasiliensic and isobrasiliensic acids showed good in vitro bacteriostatic activity against Helicobacter pylori, and are responsible, at least in part, for the bacteriostatic anti-H. pylori activity of the n-hexane extract of the stem bark of C. brasiliense.

9.
Phytochemistry ; 122: 178-183, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26723883

RESUMO

Three dimeric acylphloroglucinols, austrobrasilol A, austrobrasilol B and isoaustrobrasilol B were isolated from the flowers of Hypericum austrobrasiliense (Hypericaceae, section Trigynobrathys). Their structures were elucidated using mass spectrometry and NMR experiments (1D and 2D), and by comparison with previously reported data for other dimeric acylphloroglucinols isolated from Hypericum and Elaphoglossum genera. The three compounds were orally administered in mice at equimolar doses to uliginosin B (15mg/kg, p.o.) displaying antinociceptive activity in the hot-plate test. The compounds did not induce motor impairment in the rotarod apparatus.


Assuntos
Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Hypericum/química , Floroglucinol/análogos & derivados , Floroglucinol/isolamento & purificação , Floroglucinol/farmacologia , Analgésicos/química , Animais , Brasil , Masculino , Camundongos , Estrutura Molecular , Atividade Motora/efeitos dos fármacos , Ressonância Magnética Nuclear Biomolecular , Floroglucinol/química
10.
J Nat Prod ; 77(10): 2321-5, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25264905

RESUMO

A new dimeric acylphloroglucinol derivative, andinin A (1), was isolated from the underground plant parts of Hypericum andinum, along with three known dimeric acylphloroglucinols, uliginosin A (2), uliginosin B (3), and isouliginosin B (4). The structure of 1 was elucidated using 1D and 2D NMR and MS experiments and by comparison with previously reported data for Hypericum dimeric acylphloroglucinols. Andinin A (1) displayed antidepressant-like activity in a mouse forced-swimming test when administered orally at doses of 3, 10, and 30 mg/kg.


Assuntos
Antidepressivos , Hypericum/química , Floroglucinol , Administração Oral , Animais , Antidepressivos/química , Antidepressivos/isolamento & purificação , Antidepressivos/farmacologia , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Peru , Floroglucinol/análogos & derivados , Floroglucinol/química , Floroglucinol/isolamento & purificação , Floroglucinol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...