Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 44(28): 4424-4440, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35731670

RESUMO

Acid mine drainage was evaluated using a galvanic (GV) electrochemical system, Al-Cu (anode/cathode), based on a 32 factorial design. The factors analyzed were anodic area/volume ratios (A/V) of 0.037, 0.072, and 0.112 cm2/cm3, and treatment time from 0.25-8 h, and analyses were performed in duplicate with 11 degrees of freedom. The response variables were the total dissolved solids and concentrations of As, Cu, Co, Cr, Pb, Fe, Ni, and SO42-. The pH, electrical conductivity, and temperature were monitored during the process. Significant differences between treatments were determined by analysis of variance with Tukey's test (p < 0.05) using Statgraphics Centurion XVI.I software. The results showed that a greater electrode surface, A/V ratio, and treatment time improved pollutant removal. The spontaneous reactions generated by the galvanic cell, through the current that flows owing to the potential difference between the Al and Cu electrodes, allows the removal of heavy metals, arsenic, and SO42- by coagulation and precipitation mechanisms. The removal efficiencies achieved were Cu (99.1%), As (76.6%), Ni (80.2%), Pb (83.6%), Cr (100%), Fe (93.71%), and 92.9% for sulfates. The X-ray diffraction and Raman analyses of the solid fraction indicated that cuprite was formed with a purity of 96%, and the recovery of Cu by the GV system may be a viable option for mining companies.


Assuntos
Arsênio , Metais Pesados , Poluentes Químicos da Água , Chumbo/análise , Poluentes Químicos da Água/análise , Metais Pesados/análise , Mineração , Ácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...