Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Res ; 35(1): 58-75, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35844898

RESUMO

This study compared the effect of gelatin- and chitosan-based scaffolds on osteoblast biomineralization. These scaffolds have been modified using methacrylate and laponite nanosilicates to improve their mechanical strength and support osteoblast function. Scaffold materials were prepared to have the same compressive strength (14-15 MPa) such that differences in cell response would be isolated to differences in biopolymer chemistry. The materials were tested for rheological properties to optimize the bio-ink for successful 3D printing using a robocast-assisted deposition system. Osteoblasts were cultured on the surface of 3D-printed methacrylated chitosan-laponite (MAC-Lp), methacrylated gelatin-laponite (MAG-Lp), MAC, and MAG scaffolds. MAC-Lp scaffolds showed increased cell viability, cell growth, and biomineral formation as compared to MAG-Lp scaffolds. FTIR results showed the presence of higher biomineral phosphate and extracellular matrix (ECM) collagen-like amide formation on MAC-Lp scaffolds as compared to MAG-Lp scaffolds. MAC-Lp scaffolds showed increased density of ECM-like tissue from SEM analysis, stained mineral nodules from Alizarin staining, and the existence of Ca─P species evident by X-ray absorbance near edge structure analysis. In conclusion, MAC-Lp scaffolds enhanced osteoblast growth and biomineral formation as compared to MAG-Lp scaffolds.

2.
J Tissue Eng Regen Med ; 12(11): 2203-2220, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30062712

RESUMO

Oxidative stress, induced by harmful levels of reactive oxygen species, is a common occurrence that impairs proper bone defect vascular healing through the impairment of endothelial cell function. Ionic silicon released from silica-based biomaterials, can upregulate hypoxia-inducible factor-1α (HIF-1α). Yet it is unclear whether ionic Si can restore endothelial cell function under oxidative stress conditions. Therefore, we hypothesized that ionic silicon can help improve human umbilical vein endothelial cells' (HUVECs') survival under toxic oxidative stress. In this study, we evaluated the ionic jsilicon effect on HUVECs viability, proliferation, migration, gene expression, and capillary tube formation under normal conditions and under harmful hydrogen peroxide levels. We demonstrated that 0.5-mM Si4+ significantly enhanced angiogenesis in HUVECs under normal condition (p < 0.05). HUVECs exposed to 0.5-mM Si4+ presented a morphological change, even without the bed of Matrigel, and formed significantly more tube-like structures than the control (p < 0.001). In addition, 0.5-mM Si4+ enhanced cell viability in HUVECs under harmful H2 O2 levels. HIF-1α, vascular endothelial growth factor-A, and vascular endothelial growth factor receptor-2 were overexpressed more than twofold in silicon-treated HUVECs, under normal and toxic H2 O2 conditions. Moreover, the HUVECs were treated with 0.5-mM Si4+ overexpressed superoxide dismutase-1 (SOD-1), catalase-1 (Cat-1), and nitric oxide synthase-3 (NOS3) under normal and oxidative stress environment (p < 0.01). A computational model was used for explaining the antioxidant effect of Si4+ in endothelial cells and human periosteum cells by SOD-1 enhancement. In conclusion, we demonstrated that 0.5-mM Si4+ can recover the HUVECs' viability under oxidative stress conditions by reducing cell death and upregulating expression of angiogenic and antioxidant factors.


Assuntos
Materiais Biocompatíveis , Células Endoteliais da Veia Umbilical Humana/metabolismo , Peróxido de Hidrogênio/efeitos adversos , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/biossíntese , Silicatos , Fator A de Crescimento do Endotélio Vascular/biossíntese , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Mitocondriais , Proteínas de Neoplasias/metabolismo , Óxido Nítrico Sintase/biossíntese , Silicatos/química , Silicatos/farmacologia , Silício/química , Silício/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA