Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Front Mol Biosci ; 11: 1334819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606285

RESUMO

COVID-19, the infectious disease caused by the most recently discovered coronavirus SARS- CoV-2, has caused millions of sick people and thousands of deaths all over the world. The viral positive-sense single-stranded RNA encodes 31 proteins among which the spike (S) is undoubtedly the best known. Recently, protein E has been reputed as a potential pharmacological target as well. It is essential for the assembly and release of the virions in the cell. Literature describes protein E as a voltage-dependent channel with preference towards monovalent cations whose intracellular expression, though, alters Ca2+ homeostasis and promotes the activation of the proinflammatory cascades. Due to the extremely high sequence identity of SARS-CoV-2 protein E (E-2) with the previously characterized E-1 (i.e., protein E from SARS-CoV) many data obtained for E-1 were simply adapted to the other. Recent solid state NMR structure revealed that the transmembrane domain (TMD) of E-2 self-assembles into a homo-pentamer, albeit the oligomeric status has not been validated with the full-length protein. Prompted by the lack of a common agreement on the proper structural and functional features of E-2, we investigated the specific mechanism/s of pore-gating and the detailed molecular structure of the most cryptic protein of SARS-CoV-2 by means of MD simulations of the E-2 structure and by expressing, refolding and analyzing the electrophysiological activity of the transmembrane moiety of the protein E-2, in its full length. Our results show a clear agreement between experimental and predictive studies and foresee a mechanism of activity based on Ca2+ affinity.

2.
Chemphyschem ; : e202400147, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625051

RESUMO

We investigated, by using all-atom molecular dynamics simulations, the effect of the asymmetric outer membrane layer of Gram-negative bacteria, composed in the outer leaflet by polar/charged lipopolysaccharides (LPS), on the electrostatic properties of general porins from the Enterobacteriaceae family. These porins constitute the main path for the facilitated diffusion of polar antibiotics to cross the outer membrane. As model system we selected OmpK36 from Klebsiella pneumoniae, the ortholog of OmpC from Escherichia coli. This species presents high variability of amino acid composition of porins, with the effect to increase its resistance to the penetration of antibiotics. The various properties we analyzed seem to indicate that LPS acts as an independent layer without affecting the internal electrostatic properties of OmpK36. The only apparent effect at this time scale is the appearance of calcium ions, when present at moderate concentration in solution, inside the pore, though we noticed only increased fluctuations of the polarization density and slight changes on its average value.

3.
Cancers (Basel) ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611000

RESUMO

The efficacy and safety of olaratumab plus nabpaclitaxel and gemcitabine in treatment-naïve participants with metastatic pancreatic ductal adenocarcinoma was evaluated. An initial phase 1b dose-escalation trial was conducted to determine the olaratumab dose for the phase 2 trial, a randomized, double-blind, placebo-controlled trial to compare overall survival (OS) in the olaratumab arm vs. placebo arms. In phase 1b, 22 participants received olaratumab at doses of 15 and 20 mg/kg with a fixed dose of nabpaclitaxel and gemcitabine. In phase 2, 159 participants were randomized to receive olaratumab 20 mg/kg in cycle 1 followed by 15 mg/kg in the subsequent cycles (n = 81) or the placebo (n = 78) on days 1, 8, and 15 of a 28-day cycle, plus nabpaclitaxel and gemcitabine. The primary objective of the trial was not met, with a median OS of 9.1 vs. 10.8 months (hazard ratio [HR] = 1.05; 95% confidence interval [CI]: 0.728, 1.527; p = 0.79) and the median progression-free survival (PFS) was 5.5 vs. 6.4 months (HR = 1.19; 95% CI: 0.806, 1.764; p = 0.38), in the olaratumab vs. placebo arms, respectively. The most common treatment-emergent adverse event of any grade across both arms was fatigue. Olaratumab plus chemotherapy failed to improve the OS or PFS in participants with metastatic PDAC. There were no new safety signals.

4.
RSC Adv ; 14(5): 2905-2917, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239435

RESUMO

Benzothiazole-based bacterial DNA gyrase and topoisomerase IV inhibitors are promising new antibacterial agents with potent activity against Gram-positive and Gram-negative bacterial strains. The aim of this study was to improve the uptake of these inhibitors into the cytoplasm of Gram-negative bacteria by conjugating them to the small siderophore mimics. The best conjugate 18b displayed potent Escherichia coli DNA gyrase and topoisomerase IV inhibition. The interaction analysis of molecular dynamics simulation trajectory showed the important contribution of the siderophore mimic moiety to binding affinity. By NMR spectroscopy, we demonstrated that the hydroxypyridinone moiety alone was responsible for the chelation of iron(iii). Moreover, 18b showed an enhancement of antibacterial activity against E. coli JW5503 in an iron-depleted medium, clearly indicating an increased uptake of 18b in this bacterial strain.

5.
J Biol Chem ; 300(2): 105537, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072042

RESUMO

The extremophile bacterium D. radiodurans boasts a distinctive cell envelope characterized by the regular arrangement of three protein complexes. Among these, the Type II Secretion System (T2SS) stands out as a pivotal structural component. We used cryo-electron microscopy to reveal unique features, such as an unconventional protein belt (DR_1364) around the main secretin (GspD), and a cap (DR_0940) found to be a separated subunit rather than integrated with GspD. Furthermore, a novel region at the N-terminus of the GspD constitutes an additional second gate, supplementing the one typically found in the outer membrane region. This T2SS was found to contribute to envelope integrity, while also playing a role in nucleic acid and nutrient trafficking. Studies on intact cell envelopes show a consistent T2SS structure repetition, highlighting its significance within the cellular framework.


Assuntos
Membrana Celular , Deinococcus , Extremófilos , Sistemas de Secreção Tipo II , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Deinococcus/metabolismo , Extremófilos/metabolismo , Sistemas de Secreção Tipo II/química , Sistemas de Secreção Tipo II/metabolismo , Transporte Proteico
6.
Cancers (Basel) ; 15(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37835565

RESUMO

Gemcitabine plus docetaxel is an effective treatment regimen for advanced soft tissue sarcomas (STSs). However, the prognosis for patients remains poor, and thus there is an urgent medical need for novel and effective therapies to improve long-term outcomes. The aim of the ANNOUNCE 2 trial was to explore the addition of olaratumab (O) to gemcitabine (G) and docetaxel (D) for advanced STS. Adults with unresectable locally advanced/metastatic STS, ≤2 prior lines of systemic therapy, and ECOG PS 0-1 were eligible. In Phase 2, patients were randomized 1:1 from two cohorts (O-naïve and O-pretreated) to 21-day cycles of olaratumab (20 mg/kg Cycle 1 and 15 mg/kg other cycles, Days 1 and 8), gemcitabine (900 mg/m2, Days 1 and 8), and docetaxel (75 mg/m2, Day 8). The primary objective was overall survival (OS) in the O-naïve population (α level = 0.20). Secondary endpoints included OS (O-pretreated), other efficacy parameters, patient-reported outcomes, safety, pharmacokinetics, and immunogenicity. A total of 167 and 89 patients were enrolled in the O-naïve and O-pretreated cohorts, respectively. Baseline patient characteristics were well balanced. No statistically significant difference in OS was observed between the investigational vs. control arm for either cohort (O-naïve cohort: HR = 0.95 (95% CI: 0.64-1.40), p = 0.78, median OS, 16.8 vs. 18.0 months; O-pretreated cohort: HR = 0.67 (95% CI: 0.39-1.16), p = 0.15, median OS 19.8 vs. 17.3 months). Safety was manageable across treatment arms. There was no statistically significant difference in the primary endpoint of OS between the two arms in the O-naïve population, and therefore based on hierarchical evaluation no other outcomes in this study can be considered statistically significant. No new safety signals were observed.

7.
Chem Sci ; 14(38): 10547-10560, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37799987

RESUMO

Protein fold adaptation to novel enzymatic reactions is a fundamental evolutionary process. Cofactor-independent oxygenases degrading N-heteroaromatic substrates belong to the α/ß-hydrolase (ABH) fold superfamily that typically does not catalyze oxygenation reactions. Here, we have integrated crystallographic analyses under normoxic and hyperoxic conditions with molecular dynamics and quantum mechanical calculations to investigate its prototypic 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) member. O2 localization to the "oxyanion hole", where catalysis occurs, is an unfavorable event and the direct competition between dioxygen and water for this site is modulated by the "nucleophilic elbow" residue. A hydrophobic pocket that overlaps with the organic substrate binding site can act as a proximal dioxygen reservoir. Freeze-trap pressurization allowed the structure of the ternary complex with a substrate analogue and O2 bound at the oxyanion hole to be determined. Theoretical calculations reveal that O2 orientation is coupled to the charge of the bound organic ligand. When 1-H-3-hydroxy-4-oxoquinaldine is uncharged, O2 binds with its molecular axis along the ligand's C2-C4 direction in full agreement with the crystal structure. Substrate activation triggered by deprotonation of its 3-OH group by the His-Asp dyad, rotates O2 by approximately 60°. This geometry maximizes the charge transfer between the substrate and O2, thus weakening the double bond of the latter. Electron density transfer to the O2(π*) orbital promotes the formation of the peroxide intermediate via intersystem crossing that is rate-determining. Our work provides a detailed picture of how evolution has repurposed the ABH-fold architecture and its simple catalytic machinery to accomplish metal-independent oxygenation.

8.
Phys Chem Chem Phys ; 25(39): 26497-26506, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37772905

RESUMO

General porins are nature's sieving machinery in the outer membrane of Gram-negative bacteria. Their unique hourglass-shaped architecture is highly conserved among different bacterial membrane proteins and other biological channels. These biological nanopores have been designed to protect the interior of the bacterial cell from leakage of toxic compounds while selectively allowing the entry of the molecules needed for cell growth and function. The mechanism of transport through porins is of utmost and direct interest for drug discovery, extending toward nanotechnology applications for blue energy, separations, and sequencing. Here we present a theoretical framework for analysing the filter of general porins in relation to translocating molecules with the aid of enhanced molecular simulations quantitatively. Using different electrostatic probes in the form of a series of related molecules, we describe the nature of this filter and how to finely tune permeability by exploiting electrostatic interactions between the pore and the translocating molecule. Eventually, we show how enhanced simulations constitute today a valid tool for characterising the mechanism and quantifying energetically the transport of molecules through nanopores.

9.
Biomol Concepts ; 14(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37677148

RESUMO

Human endo-lysosomes possess a class of proteins called TPC channels on their membrane, which are essential for proper cell functioning. This protein family can be functionally studied by expressing them in plant vacuoles. Inhibition of hTPC activity by naringenin, one of the main flavonoids present in the human diet, has the potential to be beneficial in severe human diseases such as solid tumor development, melanoma, and viral infections. We attempted to identify the molecular basis of the interaction between hTPC2 and naringenin, using ensemble docking on molecular dynamics (MD) trajectories, but the specific binding site remains elusive, posing a challenge that could potentially be addressed in the future by increased computational power in MD and the combined use of microscopy techniques such as cryo-EM.


Assuntos
Endometriose , Flavanonas , Humanos , Feminino , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Sítios de Ligação
10.
Clin Cancer Res ; 29(17): 3320-3328, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37382656

RESUMO

PURPOSE: The study evaluated safety and efficacy of olaratumab + pembrolizumab in patients with unresectable locally advanced/metastatic soft-tissue sarcoma (STS) with disease progression on standard treatment. PATIENTS AND METHODS: This was open-label, multicenter, nonrandomized, phase Ia/Ib dose-escalation study followed by cohort expansion (olaratumab + pembrolizumab intravenous infusion). Primary objectives were safety and tolerability. RESULTS: The majority of patients enrolled (n = 41) were female [phase Ia: 9 of 13, phase Ib/dose-expansion cohort (DEC), 17 of 28], aged < 65 years. In phases Ia and Ib, 13 and 26 patients received prior systemic therapy, respectively. Patients received olaratumab 15 mg/kg (phase Ia; cohort 1) or 20 mg/kg (phase Ia; cohort 2 and phase Ib) and pembrolizumab 200 mg (phase Ia/Ib). The median (Q1-Q3) duration of therapy (olaratumab) was 6.0 (3.0-11.9; cohort 1), 14.4 (12.4-20.9; cohort 2), and 14.0 (6.0-21.8) weeks (DEC). No dose-limiting toxicities and few grade ≥ 3 treatment-emergent adverse events [TEAE; 15 mg/kg: 2 (increased lipase); 20 mg/kg: 1 (increased lipase), 1 (colitis), 2 (diarrhea), 3 (anemia)] were reported. Two TEAEs (increased lipase) were related to study discontinuations. Twenty-one patients reported mild (grade ≤ 2) TEAEs [phase Ia, disease control rate (DCR):14.3% (1/7, cohort 1); 66.7% (4/6, cohort 2); no responses were reported; phase Ib, DCR: 53.6% (15/28); objective response rate: 21.4% (6/28; RECIST and irRECIST criteria)]. No response was observed in patients with programmed death ligand-1-positive tumors. CONCLUSIONS: Antitumor activity was observed in some patients in DEC, and combination was well tolerated with manageable safety profile. Further studies are warranted to evaluate the efficacy and mechanistic impact of platelet-derived growth factor receptor inhibitors with immune checkpoint modulator coadministration.


Assuntos
Segunda Neoplasia Primária , Sarcoma , Neoplasias de Tecidos Moles , Feminino , Humanos , Masculino , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Segunda Neoplasia Primária/tratamento farmacológico , Sarcoma/tratamento farmacológico , Neoplasias de Tecidos Moles/tratamento farmacológico , Resultado do Tratamento
11.
Clin Lung Cancer ; 24(5): 415-428, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37076395

RESUMO

BACKGROUND: Ramucirumab plus erlotinib (RAM+ERL) demonstrated superior progression-free survival (PFS) in RELAY, a randomised Phase III trial in patients with untreated, metastatic, EGFR-mutated, non-small-cell lung cancer (EGFR+ NSCLC). Here, we present the relationship between TP53 status and outcomes in RELAY. MATERIALS AND METHODS: Patients received oral ERL plus intravenous RAM (10 mg/kg IV) or placebo (PBO+ERL) every 2 weeks. Plasma was assessed by Guardant 360 next-generation sequencing and patients with any gene alteration detected at baseline were included in this exploratory analysis. Endpoints included PFS, overall response rate (ORR), disease control rate (DCR), DoR, overall survival (OS), safety, and biomarker analysis. The association between TP53 status and outcomes was evaluated. RESULTS: Mutated TP53 was detected in 165 (42.7%; 74 RAM+ERL, 91 PBO+ERL) patients, wild-type TP53 in 221 (57.3%; 118 RAM+ERL, 103 PBO+ERL) patients. Patient and disease characteristics and concurrent gene alterations were comparable between those with mutant and wildtype TP53. Independent of treatment, TP53 mutations, most notably on exon 8, were associated with worse clinical outcomes. In all patients, RAM+ERL improved PFS. While ORR and DCR were comparable across all patients, DoR was superior with RAM+ERL. There were no clinically meaningful differences in the safety profiles between those with baseline TP53 mutation and wild-type. CONCLUSION: This analysis indicates that while TP53 mutations are a negative prognostic marker in EGFR+ NSCLC, the addition of a VEGF inhibitor improves outcomes in those with mutant TP53. RAM+ERL is an efficacious first-line treatment option for patients with EGFR+ NSCLC, independent of TP53 status.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cloridrato de Erlotinib , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mutação/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Supressora de Tumor p53/genética , Ramucirumab
12.
Phys Chem Chem Phys ; 25(18): 12712-12722, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098836

RESUMO

Transmembrane ß-barrel proteins are key systems for transport phenomena in biology. Based on their broad substrate specificity, they represent good candidates for present and future technological applications, such as DNA/RNA and protein sequencing, sensing of biomedical analytes, and production of blue energy. For a better understanding of the process at the molecular level, we applied parallel tempering simulations in the WTE ensemble to compare two ß-barrel porins from Escherichia coli, OmpF and OmpC. Our analysis showed a different behavior of the two highly homologous porins, where subtle amino acid substitutions can modulate critical properties of mass transport. Interestingly, the differences can be mapped to the respective environmental conditions under which the two porins are expressed. Apart from reporting on the advantages of the enhanced sampling methods in assessing the molecular properties of nanopores, our comparative analysis provided new and key results to better understand biological function and technical applications. Eventually, we showed how results from molecular simulations align well with experimental single-channel measurements, thus demonstrating the mature evolution of numerical methodologies for predicting properties in this field crucial for future biomedical applications.


Assuntos
Escherichia coli , Porinas , Escherichia coli/metabolismo , Sequência de Aminoácidos , Porinas/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/metabolismo
13.
Biomol Concepts ; 14(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38167297

RESUMO

10B isotopes have been almost exclusively used in the neutron-capture radiation therapy (NCT) of cancer for decades. We have identified two other nuclides suitable for radiotherapy, which have ca. ten times larger cross section of absorption for neutrons and emit heavy charged particles. This would provide several key advantages for potential NCT, such as the possibility to use a lower nuclide concentration in the target tissues or a lower neutron irradiation flux. By detecting the characteristic γ radiation from the spontaneous decay of the radionuclides, one can image their biodistribution. These advantages could open up new possibilities for NCT applications as a safer and more efficient cancer therapy.


Assuntos
Neoplasias , Radioisótopos , Humanos , Distribuição Tecidual , Radioisótopos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Nêutrons
14.
Cell Death Dis ; 13(12): 1055, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539400

RESUMO

Ion channels are non-conventional, druggable oncological targets. The intermediate-conductance calcium-dependent potassium channel (KCa3.1) is highly expressed in the plasma membrane and in the inner mitochondrial membrane (mitoKCa3.1) of various cancer cell lines. The role mitoKCa3.1 plays in cancer cells is still undefined. Here we report the synthesis and characterization of two mitochondria-targeted novel derivatives of a high-affinity KCa3.1 antagonist, TRAM-34, which retain the ability to block channel activity. The effects of these drugs were tested in melanoma, pancreatic ductal adenocarcinoma and breast cancer lines, as well as in vivo in two orthotopic models. We show that the mitochondria-targeted TRAM-34 derivatives induce release of mitochondrial reactive oxygen species, rapid depolarization of the mitochondrial membrane, fragmentation of the mitochondrial network. They trigger cancer cell death with an EC50 in the µM range, depending on channel expression. In contrast, inhibition of the plasma membrane KCa3.1 by membrane-impermeant Maurotoxin is without effect, indicating a specific role of mitoKCa3.1 in determining cell fate. At sub-lethal concentrations, pharmacological targeting of mitoKCa3.1 significantly reduced cancer cell migration by enhancing production of mitochondrial reactive oxygen species and nuclear factor-κB (NF-κB) activation, and by downregulating expression of Bcl-2 Nineteen kD-Interacting Protein (BNIP-3) and of Rho GTPase CDC-42. This signaling cascade finally leads to cytoskeletal reorganization and impaired migration. Overexpression of BNIP-3 or pharmacological modulation of NF-κB and CDC-42 prevented the migration-reducing effect of mitoTRAM-34. In orthotopic models of melanoma and pancreatic ductal adenocarcinoma, the tumors at sacrifice were 60% smaller in treated versus untreated animals. Metastasis of melanoma cells to lymph nodes was also drastically reduced. No signs of toxicity were observed. In summary, our results identify mitochondrial KCa3.1 as an unexpected player in cancer cell migration and show that its pharmacological targeting is efficient against both tumor growth and metastatic spread in vivo.


Assuntos
Carcinoma Ductal Pancreático , Melanoma , Neoplasias Pancreáticas , Canais de Potássio Cálcio-Ativados , Animais , NF-kappa B/metabolismo , Cálcio/metabolismo , Canais de Cálcio , Canais de Potássio , Espécies Reativas de Oxigênio/metabolismo , Morte Celular , Mitocôndrias/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Neoplasias Pancreáticas
15.
Antibiotics (Basel) ; 11(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35884094

RESUMO

We investigated the diffusion of three cyclic boronates formulated as beta-lactamase inhibitors through the porin OmpF to evaluate their potential to cross OM via the porin pathway. The three nonbeta-lactam molecules diffuse through the porin eyelet region with the same mechanism observed for beta-lactam molecules and diazobicyclooctan derivatives, with the electric dipole moment aligned with the transversal electric field. In particular, the BOH group can interact with both the basic ladder and the acidic loop L3, which is characteristic of the size-constricted region of this class of porins. On one hand, we confirm that the transport of small molecules through enterobacter porins has a common general mechanism; on the other, the class of cyclic boronate molecules does not seem to have particular difficulties in diffusing through enterobacter porins, thus representing a good scaffold for new anti-infectives targeting Gram-negative bacteria research.

16.
ACS Infect Dis ; 8(9): 1894-1904, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35881068

RESUMO

Enterobactin (ENT) is a tris-catechol siderophore used to acquire iron by multiple bacterial species. These ENT-dependent iron uptake systems have often been considered as potential gates in the bacterial envelope through which one can shuttle antibiotics (Trojan horse strategy). In practice, siderophore analogues containing catechol moieties have shown promise as vectors to which antibiotics may be attached. Bis- and tris-catechol vectors (BCVs and TCVs, respectively) were shown using structural biology and molecular modeling to mimic ENT binding to the outer membrane transporter PfeA in Pseudomonas aeruginosa. TCV but not BCV appears to cross the outer membrane via PfeA when linked to an antibiotic (linezolid). TCV is therefore a promising vector for Trojan horse strategies against P. aeruginosa, confirming the ENT-dependent iron uptake system as a gate to transport antibiotics into P. aeruginosa cells.


Assuntos
Enterobactina , Oxazolidinonas , Antibacterianos/química , Catecóis/química , Catecóis/metabolismo , Enterobactina/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oxazolidinonas/química , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo
17.
JTO Clin Res Rep ; 3(4): 100303, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35369607

RESUMO

Introduction: Ramucirumab (RAM) plus erlotinib was found to have superior progression-free survival (PFS) versus placebo plus erlotinib in untreated EGFR-mutated metastatic NSCLC in the global phase 3 RELAY study. RELAY+ was an open-label, two-period, single-arm, exploratory study of RAM plus gefitinib (GEF; period 1) and RAM plus osimertinib (period 2) in East Asia (NCT02411448). Methods: Period 1 evaluated RAM (10 mg/kg) plus GEF (250 mg/d) in patients with untreated EGFR-mutated metastatic NSCLC. Period 2 evaluated RAM plus osimertinib (80 mg/d) in patients with disease progression who acquired T790M mutation in period 1. Exploratory end points included 1-year PFS rate (primary), other efficacy parameters, safety, and biomarker analyses of plasma (baseline, on-treatment, follow-up) using next-generation sequencing. Results: From December 2017 to August 2018, a total of 82 patients were enrolled and started treatment (period 1, RAM + GEF). The 1-year PFS rate was 62.9% (95% confidence interval: 50.3-73.1). Treatment-emergent adverse events of grade three or higher were reported with RAM plus GEF in 60 of 82 patients (73.2%; five patients [6.1%] grade four). There were two deaths owing to adverse events that occurred (acute cardiac failure, congestive cardiac failure). T790M rate at disease progression in plasma was 81.0% (13 of 16 patients). Conclusions: RELAY+ was found to have a favorable benefit-risk profile for RAM plus GEF in first-line treatment of East Asian patients with EGFR-mutated NSCLC.

18.
Biomol Concepts ; 13(1): 207-219, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35417112

RESUMO

Passive transport of molecules through nanopores is characterized by the interaction of molecules with pore internal walls and by a general crowding effect due to the constricted size of the nanopore itself, which limits the presence of molecules in its interior. The molecule-pore interaction is treated within the diffusion approximation by introducing the potential of mean force and the local diffusion coefficient for a correct statistical description. The crowding effect can be handled within the Markov state model approximation. By combining the two methods, one can deal with complex free energy surfaces taking into account crowding effects. We recapitulate the equations bridging the two models to calculate passive currents assuming a limited occupancy of the nanopore in a wide range of molecular concentrations. Several simple models are analyzed to clarify the consequences of the model. Eventually, a biologically relevant case of transport of an antibiotic molecule through a bacterial porin is used to draw conclusions (i) on the effects of crowding on transport of small molecules through biological channels, and (ii) to demonstrate its importance for modelling of cellular transport.


Assuntos
Nanoporos
19.
Cells ; 11(6)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326372

RESUMO

A distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets. A detailed functional characterization of many lysosomal channels and transporters is lacking, mainly due to technical difficulties in applying the standard patch-clamp technique to these small intracellular compartments. In this review, we focus on current methods used to unravel the functional properties of lysosomal ion channels and transporters, stressing their advantages and disadvantages and evaluating their fields of applicability.


Assuntos
Canais Iônicos , Doenças por Armazenamento dos Lisossomos , Humanos , Membranas Intracelulares/metabolismo , Canais Iônicos/metabolismo , Íons/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Técnicas de Patch-Clamp
20.
Phys Chem Chem Phys ; 23(34): 18461-18474, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612386

RESUMO

Subcellular and organellar mechanisms have manifested a prominent importance for a broad variety of processes that maintain cellular life at its most basic level. Mammalian two-pore channels (TPCs) appear to be cornerstones of these processes in endo-lysosomes by controlling delicate ion-concentrations in their interiors. With evolutionary remarkable architecture and one-of-a-kind selectivity filter, TPCs are an extremely attractive topic per se. In the light of the current COVID-19 pandemic, hTPC2 emerges to be more than attractive. As a key regulator of the endocytosis pathway, it is potentially essential for diverse viral infections in humans, as demonstrated. Here, by means of multiscale molecular simulations, we propose a model of sodium transport from the lumen to the cytosol where the central cavity works as a reservoir. Since the inhibition of hTPC2 is proven to stop SARS-CoV2 in vitro, shedding light on the hTPC2 function and mechanism is the first step towards the selection of potential inhibiting candidates.


Assuntos
Ativação do Canal Iônico , Canais Iônicos de Abertura Ativada por Ligante/fisiologia , Sódio/metabolismo , COVID-19 , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Ligantes , SARS-CoV-2/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...