Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2307838, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711210

RESUMO

Rechargeable multivalent-ion batteries are attractive alternatives to Li-ion batteries to mitigate their issues with metal resources and metal anodes. However, many challenges remain before they can be practically used due to the low solid-state mobility of multivalent ions. In this study, a promising material identified by high-throughput computational screening is investigated, ε-VOPO4, as a Mg cathode. The experimental and computational evaluation of ε-VOPO4 suggests that it may provide an energy density of >200 Wh kg-1 based on the average voltage of a complete cycle, significantly more than that of well-known Chevrel compounds. Furthermore, this study finds that Mg-ion diffusion can be enhanced by co-intercalation of Li or Na, pointing at interesting correlation dynamics of slow and fast ions.

2.
Chem Mater ; 36(9): 4444-4455, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764753

RESUMO

Identifying next-generation batteries with multivalent ions, such as Ca2+ is an active area of research to meet the increasing demand for large-scale, renewable energy storage solutions. Despite the promise of higher energy densities with multivalent batteries, one of their main challenges is addressing the sluggish kinetics in cathodes that arise from stronger electrostatic interactions between the multivalent ion and host lattice. In this paper, zircons are theoretically and experimentally evaluated as Ca cathodes. A migration barrier as low as 113 meV is computationally found in YVO4, which is the lowest Ca2+ barrier reported to date. Low barriers are confirmed across 18 zircon compositions, which are related to the low coordination change and reduced interstitial site preference of Ca2+ along the diffusion pathway. Among the four materials (BiVO4, YVO4, EuCrO4, and YCrO4) that were synthesized, characterized, and electrochemically cycled, the highest initial capacity of 81 mA h/g and the most reversible capacity of 65 mA h/g were achieved in YVO4 and BiVO4, respectively. Despite the facile migration of multivalent ions in zircons, density functional theory predictions of the unstable, discharged structures at higher Ca2+ concentrations (Cax>0.25ABO4), the low dimensionality of the migration pathway, and the defect analysis of the B site atom can rationalize the limited intercalation observed upon electrochemical cycling.

3.
Proc Natl Acad Sci U S A ; 121(18): e2316493121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657039

RESUMO

Since the 1980s, the paddlewheel effect has been suggested as a mechanism to boost lithium-ion diffusion in inorganic materials via the rotation of rotor-like anion groups. However, it remains unclear whether the paddlewheel effect, defined as large-angle anion group rotations assisting Li hopping, indeed exists; furthermore, the physical mechanism by which the anion-group dynamics affect lithium-ion diffusion has not yet been established. In this work, we differentiate various types of rotational motions of anion groups and develop quaternion-based algorithms to detect, quantify, and relate them to lithium-ion motion in ab initio molecular dynamics simulations. Our analysis demonstrates that, in fact, the paddlewheel effect, where an anion group makes a large angle rotation to assist a lithium-ion hop, does not exist and thus is not responsible for the fast lithium-ion diffusion in superionic conductors, as historically claimed. Instead, we find that materials with topologically isolated anion groups can enhance lithium-ion diffusivity via a more classic nondynamic soft-cradle mechanism, where the anion groups tilt to provide optimal coordination to a lithium ion throughout the hopping process to lower the migration barrier. This anion-group disorder is static in nature, rather than dynamic and can explain most of the experimental observations. Our work substantiates the nonexistence of the long-debated paddlewheel effect and clarifies any correlation that may exist between anion-group rotations and fast ionic diffusion in inorganic materials.

4.
Chem Mater ; 36(6): 2642-2651, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38558919

RESUMO

All solid-state batteries (SSBs) are considered the most promising path to enabling higher energy-density portable energy, while concurrently improving safety as compared to current liquid electrolyte solutions. However, the desire for high energy necessitates the choice of high-voltage cathodes, such as nickel-rich layered oxides, where degradation phenomena related to oxygen loss and structural densification at the cathode surface are known to significantly compromise the cycle and thermal stability. In this work, we show, for the first time, that even in an SSB, and when protected by an intact amorphous coating, the LiNi0.5Mn0.3Co0.2O2 (NMC532) surface transforms from a layered structure into a rocksalt-like structure after electrochemical cycling. The transformation of the surface structure of the Li3B11O18 (LBO)-coated NMC532 cathode in a thiophosphate-based solid-state cell is characterized by high-resolution complementary electron microscopy techniques and electron energy loss spectroscopy. Ab initio molecular dynamics corroborate facile transport of O2- in the LBO coating and in other typical coating materials. This work identifies that oxygen loss remains a formidable challenge and barrier to long-cycle life high-energy storage, even in SSBs with durable, amorphous cathode coatings, and directs attention to considering oxygen permeability as an important new design criteria for coating materials.

6.
Nat Commun ; 15(1): 1418, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360817

RESUMO

Extracting structured knowledge from scientific text remains a challenging task for machine learning models. Here, we present a simple approach to joint named entity recognition and relation extraction and demonstrate how pretrained large language models (GPT-3, Llama-2) can be fine-tuned to extract useful records of complex scientific knowledge. We test three representative tasks in materials chemistry: linking dopants and host materials, cataloging metal-organic frameworks, and general composition/phase/morphology/application information extraction. Records are extracted from single sentences or entire paragraphs, and the output can be returned as simple English sentences or a more structured format such as a list of JSON objects. This approach represents a simple, accessible, and highly flexible route to obtaining large databases of structured specialized scientific knowledge extracted from research papers.

7.
Nat Mater ; 23(4): 535-542, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308087

RESUMO

Oxides with a face-centred cubic (fcc) anion sublattice are generally not considered as solid-state electrolytes as the structural framework is thought to be unfavourable for lithium (Li) superionic conduction. Here we demonstrate Li superionic conductivity in fcc-type oxides in which face-sharing Li configurations have been created through cation over-stoichiometry in rocksalt-type lattices via excess Li. We find that the face-sharing Li configurations create a novel spinel with unconventional stoichiometry and raise the energy of Li, thereby promoting fast Li-ion conduction. The over-stoichiometric Li-In-Sn-O compound exhibits a total Li superionic conductivity of 3.38 × 10-4 S cm-1 at room temperature with a low migration barrier of 255 meV. Our work unlocks the potential of designing Li superionic conductors in a prototypical structural framework with vast chemical flexibility, providing fertile ground for discovering new solid-state electrolytes.

8.
Sci Adv ; 10(3): eadj5431, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232170

RESUMO

Metastable polymorphs often result from the interplay between thermodynamics and kinetics. Despite advances in predictive synthesis for solution-based techniques, there remains a lack of methods to design solid-state reactions targeting metastable materials. Here, we introduce a theoretical framework to predict and control polymorph selectivity in solid-state reactions. This framework presents reaction energy as a rarely used handle for polymorph selection, which influences the role of surface energy in promoting the nucleation of metastable phases. Through in situ characterization and density functional theory calculations on two distinct synthesis pathways targeting LiTiOPO4, we demonstrate how precursor selection and its effect on reaction energy can effectively be used to control which polymorph is obtained from solid-state synthesis. A general approach is outlined to quantify the conditions under which metastable polymorphs are experimentally accessible. With comparison to historical data, this approach suggests that using appropriate precursors could enable targeted materials synthesis across diverse chemistries through selective polymorph nucleation.

9.
Chem Mater ; 36(2): 772-785, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38282687

RESUMO

We used data-driven methods to understand the formation of impurity phases in BiFeO3 thin-film synthesis through the sol-gel technique. Using a high-quality dataset of 331 synthesis procedures and outcomes extracted manually from 177 scientific articles, we trained decision tree models that reinforce important experimental heuristics for the avoidance of phase impurities but ultimately show limited predictive capability. We find that several important synthesis features, identified by our model, are often not reported in the literature. To test our ability to correctly impute missing synthesis parameters, we attempted to reproduce nine syntheses from the literature with varying degrees of "missingness". We demonstrate how a text-mined dataset can be made useful by informing new controlled experiments and forming a better understanding for impurity phase formation in this complex oxide system.

10.
Nat Commun ; 15(1): 858, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286996

RESUMO

Despite the potentially higher energy density and improved safety of solid-state batteries (SSBs) relative to Li-ion batteries, failure due to Li-filament penetration of the solid electrolyte and subsequent short circuit remains a critical issue. Herein, we show that Li-filament growth is suppressed in solid-electrolyte pellets with a relative density beyond ~95%. Below this threshold value, however, the battery shorts more easily as the density increases due to faster Li-filament growth within the percolating pores in the pellet. The microstructural properties (e.g., pore size, connectivity, porosity, and tortuosity) of [Formula: see text] with various relative densities are quantified using focused ion beam-scanning electron microscopy tomography and permeability tests. Furthermore, modeling results provide details on the Li-filament growth inside pores ranging from 0.2 to 2 µm in size. Our findings improve the understanding of the failure modes of SSBs and provide guidelines for the design of dendrite-free SSBs.

11.
Acc Chem Res ; 57(1): 1-9, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38113116

RESUMO

ConspectusReversible Mg2+ intercalation in metal oxide frameworks is a key enabler for an operational Mg-ion battery with high energy density needed for the next generation of energy storage technologies. While functional Mg-ion batteries have been achieved in structures with soft anions (e.g., S2- and Se2-), they do not meet energy density requirements to compete with the current rechargeable lithium-ion batteries due to their low insertion potentials. It emphasizes the necessity of finding an oxide-based cathode that operates at high potentials. A leading hypothesis to explain the limited availability of oxide Mg-ion cathodes is the belief that Mg2+ has sluggish diffusion kinetics in oxides due to strong electrostatic interactions between the Mg2+ ions and oxide anions in the lattice. From this assessment, it can be hypothesized that such rate limiting kinetic shortcomings can be mitigated by tailoring an oxide framework through creating less stable Mg2+-O2- coordination.Based on theoretical calculations and preliminary experimental data, oxide spinels have been identified as promising cathode candidates with storage capacity, insertion potential, and cation mobility that meet the requirements for a secondary Mg-ion battery. However, spinels with a single redox metal, such as MgCr2O4 or MgMn2O4, were not found to demonstrate sufficiently reversible Mg-ion intercalation at high redox potentials when coupled with nonaqueous Mg-electrolytes. Therefore, a materials development effort was initiated to design, synthesize, and evaluate a new class of solid-solution oxide spinels that can satisfy the required properties needed to create a sustainable Mg-ion cathode. These were designed by bringing together electrochemically active metals with stable redox potentials and charged states against the electrolyte, for instance, Mn3+, in combination with a structural stabilization component, typically Cr3+. Furthermore, common spinel structural defects that degrade performance, i.e., antisite inversion, were controlled to see correlation between structures and electrochemical overpotentials, thus controlling overall hysteresis. The designed materials were characterized by both short- and long-range structure in both ex situ and in situ modes to confirm the nature of solid-solution and to correlate structural changes and redox activity to electrochemical performance. Consistent and reproducible results were observed for facile bulk Mg2+-ion activity without phase transformations, leading to enhanced energy storage capability based on reversible intercalation of Mg2+, enabled by understanding the variables that control the electrochemical performance of the spinel oxide. Based on these observations, with proper materials design, it is possible to develop an oxide cathode material that has many of the desired properties of a Li-ion intercalation cathode, representing a significant mile marker in the quest for high energy density Mg-ion batteries.This Account describes strategies for the design and development of new spinel oxide intercalation materials for high-energy Mg-ion battery cathodes through a combination of theoretical and experimental approaches. We will review the key factors that govern the kinetics of Mg2+ diffusion in spinel oxides and illustrate how material complexity correlates with the electrochemical Mg2+ activity in oxides and is supported by secondary characterization. The understanding gained from the fundamental studies of cation diffusion in oxide cathodes will be beneficial for chemists and materials scientists who are developing rechargeable batteries.

12.
Inorg Chem ; 63(7): 3250-3257, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38150180

RESUMO

The synthesis of complex oxides at low temperatures brings forward aspects of chemistry not typically considered. This study focuses on perovskite LaMnO3, which is of interest for its correlated electronic behavior tied to the oxidation state and thus the spin configuration of manganese. Traditional equilibrium synthesis of these materials typically requires synthesis reaction temperatures in excess of 1000 °C, followed by subsequent annealing steps at lower temperatures and different p(O2) conditions to manipulate the oxygen content postsynthesis (e.g., LaMnO3+x). Double-ion exchange (metathesis) reactions have recently been shown to react at much lower temperatures (500-800 °C), highlighting a fundamental knowledge gap for how solids react at lower temperatures. Here, we revisit the metathesis reaction, LiMnO2 + LaOX, where X is a halide or mixture of halides, using in situ synchrotron X-ray diffraction. These experiments reveal low reaction onset temperatures (ca. 450-480 °C). The lowest reaction temperatures are achieved by a mixture of lanthanum oxyhalide precursors: 2 LiMnO2 + LaOCl + LaOBr. In all cases, the resulting products are the expected alkali halide salt and defective La1-ϵMn1-ϵO3, where ϵ = x/(3 + x). We observe a systematic variation in defect concentration, consistent with a rapid stoichiometric local equilibration of the precursors and the subsequent global thermodynamic equilibration with O2 (g), as revealed by computational thermodynamics. Together, these results reveal how the inclusion of additional elements (e.g., Li and a halide) leads to the local equilibrium, particularly at low reaction temperatures for solid-state chemistry.

13.
Chem Mater ; 35(21): 9111-9126, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027543

RESUMO

The Li2S-P2S5 pseudo-binary system has been a valuable source of promising superionic conductors, with α-Li3PS4, ß-Li3PS4, HT-Li7PS6, and Li7P3S11 having excellent room-temperature Li-ion conductivity >0.1 mS/cm. The metastability of these phases at ambient temperature motivates a study to quantify their thermodynamic accessibility. Through calculating the electronic, configurational, and vibrational sources of free energy from first principles, a phase diagram of the crystalline Li2S-P2S5 space is constructed. New ground-state orderings are proposed for α-Li3PS4, HT-Li7PS6, LT-Li7PS6, and Li7P3S11. Well-established phase stability trends from experiments are recovered, such as polymorphic phase transitions in Li7PS6 and Li3PS4, and the instability of Li7P3S11 at high temperature. At ambient temperature, it is predicted that all superionic conductors in this space are indeed metastable but thermodynamically accessible. Vibrational and configurational sources of entropy are shown to be essential toward describing the stability of superionic conductors. New details of the Li sublattices are revealed and are found to be crucial toward accurately predicting configurational entropy. All superionic conductors contain significant configurational entropy, which suggests an inherent correlation between fast Li diffusion and thermodynamic stability arising from the configurational disorder.

14.
Nat Commun ; 14(1): 6956, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907493

RESUMO

Solid-state synthesis plays an important role in the development of new materials and technologies. While in situ characterization and ab-initio computations have advanced our understanding of materials synthesis, experiments targeting new compounds often still require many different precursors and conditions to be tested. Here we introduce an algorithm (ARROWS3) designed to automate the selection of optimal precursors for solid-state materials synthesis. This algorithm actively learns from experimental outcomes to determine which precursors lead to unfavorable reactions that form highly stable intermediates, preventing the target material's formation. Based on this information, ARROWS3 proposes new experiments using precursors it predicts to avoid such intermediates, thereby retaining a larger thermodynamic driving force to form the target. We validate this approach on three experimental datasets, containing results from over 200 synthesis procedures. In comparison to black-box optimization, ARROWS3 identifies effective precursor sets for each target while requiring substantially fewer experimental iterations. These findings highlight the importance of domain knowledge in optimization algorithms for materials synthesis, which are critical for the development of fully autonomous research platforms.

15.
Nature ; 624(7990): 86-91, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030721

RESUMO

To close the gap between the rates of computational screening and experimental realization of novel materials1,2, we introduce the A-Lab, an autonomous laboratory for the solid-state synthesis of inorganic powders. This platform uses computations, historical data from the literature, machine learning (ML) and active learning to plan and interpret the outcomes of experiments performed using robotics. Over 17 days of continuous operation, the A-Lab realized 41 novel compounds from a set of 58 targets including a variety of oxides and phosphates that were identified using large-scale ab initio phase-stability data from the Materials Project and Google DeepMind. Synthesis recipes were proposed by natural-language models trained on the literature and optimized using an active-learning approach grounded in thermodynamics. Analysis of the failed syntheses provides direct and actionable suggestions to improve current techniques for materials screening and synthesis design. The high success rate demonstrates the effectiveness of artificial-intelligence-driven platforms for autonomous materials discovery and motivates further integration of computations, historical knowledge and robotics.

16.
Nat Commun ; 14(1): 7448, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978171

RESUMO

Chemical short-range-order has been widely noticed to dictate the electrochemical properties of Li-excess cation-disordered rocksalt oxides, a class of cathode based on earth abundant elements for next-generation high-energy-density batteries. Existence of short-range-order is normally evidenced by a diffused intensity pattern in reciprocal space, however, derivation of local atomic arrangements of short-range-order in real space is hardly possible. Here, by a combination of aberration-corrected scanning transmission electron microscopy, electron diffraction, and cluster-expansion Monte Carlo simulations, we reveal the short-range-order is a convolution of three basic types: tetrahedron, octahedron, and cube. We discover that short-range-order directly correlates with Li percolation channels, which correspondingly affects Li transport behavior. We further demonstrate that short-range-order can be effectively manipulated by anion doping or post-synthesis thermal treatment, creating new avenues for tailoring the electrochemical properties. Our results provide fundamental insights for decoding the complex relationship between local chemical ordering and properties of crystalline compounds.

17.
ACS Cent Sci ; 9(10): 1957-1975, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37901171

RESUMO

Synthesis is a major challenge in the discovery of new inorganic materials. Currently, there is limited theoretical guidance for identifying optimal solid-state synthesis procedures. We introduce two selectivity metrics, primary and secondary competition, to assess the favorability of target/impurity phase formation in solid-state reactions. We used these metrics to analyze 3520 solid-state reactions in the literature, ranking existing approaches to popular target materials. Additionally, we implemented these metrics in a data-driven synthesis planning workflow and demonstrated its application in the synthesis of barium titanate (BaTiO3). Using an 18-element chemical reaction network with first-principles thermodynamic data from the Materials Project, we identified 82985 possible BaTiO3 synthesis reactions and selected 9 for experimental testing. Characterization of reaction pathways via synchrotron powder X-ray diffraction reveals that our selectivity metrics correlate with observed target/impurity formation. We discovered two efficient reactions using unconventional precursors (BaS/BaCl2 and Na2TiO3) that produce BaTiO3 faster and with fewer impurities than conventional methods, highlighting the importance of considering complex chemistries with additional elements during precursor selection. Our framework provides a foundation for predictive inorganic synthesis, facilitating the optimization of existing recipes and the discovery of new materials, including those not easily attainable with conventional precursors.

18.
Nat Commun ; 14(1): 6884, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898616

RESUMO

Soft clay-like Li-superionic conductors, integral to realizing all-solid-state batteries, have been recently synthesized by mixing rigid-salts. Here, through computational and experimental analysis, we clarify how a soft clay-like material can be created from a mixture of rigid-salts. Using molecular dynamics simulations with a deep learning-based interatomic potential energy model, we uncover the microscopic features responsible for soft clay-formation from ionic solid mixtures. We find that salt mixtures capable of forming molecular solid units on anion exchange, along with the slow kinetics of such reactions, are key to soft-clay formation. Molecular solid units serve as sites for shear transformation zones, and their inherent softness enables plasticity at low stress. Extended X-ray absorption fine structure spectroscopy confirms the formation of molecular solid units. A general strategy for creating soft clay-like materials from ionic solid mixtures is formulated.

19.
Nat Commun ; 14(1): 5210, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626068

RESUMO

Na Super Ionic Conductor (NASICON) materials are an important class of solid-state electrolytes owing to their high ionic conductivity and superior chemical and electrochemical stability. In this paper, we combine first-principles calculations, experimental synthesis and testing, and natural language-driven text-mined historical data on NASICON ionic conductivity to achieve clear insights into how chemical composition influences the Na-ion conductivity. These insights, together with a high-throughput first-principles analysis of the compositional space over which NASICONs are expected to be stable, lead to the successful synthesis and electrochemical investigation of several new NASICONs solid-state conductors. Among these, a high ionic conductivity of 1.2 mS cm-1 could be achieved at 25 °C. We find that the ionic conductivity increases with average metal size up to a certain value and that the substitution of PO4 polyanions by SiO4 also enhances the ionic conductivity. While optimal ionic conductivity is found near a Na content of 3 per formula unit, the exact optimum depends on other compositional variables. Surprisingly, the Na content enhances the ionic conductivity mostly through its effect on the activation barrier, rather than through the carrier concentration. These deconvoluted design criteria may provide guidelines for the design of optimized NASICON conductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...