Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Ann Surg ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716659

RESUMO

OBJECTIVE: To evaluate the prophylactic effect of Regenerative Peripheral Nerve Interface (RPNI) surgery on pediatric post-amputation pain. SUMMARY OF BACKGROUND DATA: Chronic post-amputation pain is a debilitating and refractory sequela of limb amputation affecting up to 83% of pediatric patients with limb loss, resulting in disability and decreased quality of life. We postulate that prophylactic RPNI surgery performed during amputation may decrease the incidence of symptomatic neuroma and development of phantom limb pain, as well as limit analgesic use among pediatric patients with limb loss. METHODS: Retrospective chart review was performed on pediatric patients between the ages of 8 and 21 years who underwent major lower limb amputation with and without RPNI surgery. Documented neuroma and phantom limb pain scores as well as analgesic use was recorded. Narcotic use was converted to milligrams morphine equivalents per day (MME/day) while overall analgesic use was converted to Medication Quantification Scale version III (MQSIII) scores. Analysis was performed using Stata. RESULTS: Forty-four pediatric patients were identified; 25 RPNI patients and 19 controls. Seventy-nine percent of control patients developed chronic post-amputation pain versus 21% of RPNI patients (P<0.001). Among the patients who developed post-amputation pain, 20% of controls developed clinical neuroma pain, compared to 0% of RPNI patients (P<0.001). Additionally, RPNI patients demonstrated a significant decrease in pain score (P=0.007) and narcotic usage (P<0.01), compared to controls. Overall analgesic use did not vary significantly between groups. CONCLUSIONS: Prophylactic RPNI surgery shows promise for pediatric patients undergoing major lower limb amputation by preventing both symptomatic neuromas and possibly the development of phantom limb pain.

2.
Semin Plast Surg ; 38(1): 10-18, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38495064

RESUMO

Limb amputations can be devastating and significantly affect an individual's independence, leading to functional and psychosocial challenges in nearly 2 million people in the United States alone. Over the past decade, robotic devices driven by neural signals such as neuroprostheses have shown great potential to restore the lost function of limbs, allowing amputees to regain movement and sensation. However, current neuroprosthetic interfaces have challenges in both signal quality and long-term stability. To overcome these limitations and work toward creating bionic limbs, the Neuromuscular Laboratory at University of Michigan Plastic Surgery has developed the Regenerative Peripheral Nerve Interface (RPNI). This surgical construct embeds a transected peripheral nerve into a free muscle graft, effectively amplifying small peripheral nerve signals to provide enhanced control signals for a neuroprosthetic limb. Furthermore, the RPNI has the potential to provide sensory feedback to the user and facilitate neuroprosthesis embodiment. This review focuses on the animal studies and clinical trials of the RPNI to recapitulate the promising trajectory toward neurobionics where the boundary between an artificial device and the human body becomes indistinct. This paper also sheds light on the prospects of the improvement and dissemination of the RPNI technology.

3.
Semin Plast Surg ; 38(1): 3-9, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38495067

RESUMO

In 1964, the Section of Plastic and Reconstructive Surgery at the University of Michigan opened its doors to future surgeons and leaders in the field. Today, we are celebrating the 60-year history of the program and its significant contributions to the field. Beginning under the leadership of Reed O. Dingman, MD, DDS, the program began with three faculty members and two independent surgical residents. Since that time, it has expanded dramatically to include 24 faculty members and 28 integrated plastic surgery residents. The goals of the program have always been to achieve excellence in all three of our academic missions including clinical care, teaching, and research. Annually, the program sees an average of 35,000 outpatient clinic visits, 4,000 major operations, 200 peer-reviewed publications, $5,000,000 in research spending, and residents who are well trained and highly competitive for fellowships of their choosing every single year. Through scientific collaborations, academic exchanges, and medical missions, the program's influence has spread beyond Michigan, reaching the entire world. In addition to training world-renowned surgeons, Michigan's faculty and graduates have assumed leadership roles in prestigious professional organizations, scientific journals, and research foundations. In this article, we explore the roots of the program and reflect on six decades of impact, innovation, and inspiration.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38348364

RESUMO

Background: A neuroma occurs when a regenerating transected peripheral nerve has no distal target to reinnervate. Symptomatic neuromas are a common cause of postamputation pain that can lead to substantial disability1-3. Regenerative peripheral nerve interface (RPNI) surgery may benefit patients through the use of free nonvascularized muscle grafts as physiologic targets for peripheral nerve reinnervation for mitigation of neuroma and postamputation pain. Description: An RPNI is constructed by implanting the distal end of a transected peripheral nerve into a free nonvascularized skeletal muscle graft. The neuroma or free end of the affected nerve is identified, transected, and skeletonized. A free muscle graft is then harvested from the donor thigh or from the existing amputation site, and the distal end of each transected nerve is implanted into the center of the free muscle graft with use of 6-0 nonabsorbable suture. This can be done acutely at the time of amputation or as an elective procedure at any time postoperatively. Alternatives: Nonsurgical treatments of neuromas include desensitization, chemical or anesthetic injections, biofeedback, transcutaneous electrical nerve stimulation, topical lidocaine, and/or other medications (e.g., antidepressants, anticonvulsants, and opioids). Surgical treatment of neuromas includes neuroma excision, nerve capping, excision with transposition into bone or muscle, nerve grafting, and targeted muscle reinnervation. Rationale: Creation of an RPNI is a simple and reproducible surgical option to prevent neuroma formation that leverages several biologic processes and addresses many limitations of existing neuroma-treatment strategies. Given the understanding that neuromas will form when regenerating axons are not presented with end organs for reinnervation, any strategy that reduces the number of aimless axons within a residual limb should serve to reduce symptomatic neuromas. The use of free muscle grafts offers a vast supply of denervated muscle targets for regenerating nerve axons and facilitates the reestablishment of neuromuscular junctions without sacrificing denervation of any residual muscles. Expected Outcomes: Articles describing RPNI surgery for postamputation pain have shown favorable outcomes, with significant reduction in neuroma pain and phantom pain scores at approximately 7 months postoperatively4,5. Neuroma pain scores were reduced by 71% and phantom pain scores were reduced by 53%4. Prophylactic RPNI surgery is also associated with substantially lower incidence of symptomatic neuromas (0% versus 13.3%) and a lower rate of phantom limb pain (51.1% versus 91.1%)5 compared with the rates in patients who did not undergo RPNI surgery. Important Tips: Ask the patient preoperatively to point at the site of maximal tenderness, as this can serve as a guide for where the symptomatic neuroma may be located. The incision can be made either through the previous site of the amputation or directly over the site of maximal tenderness longitudinally. The pitfall of incising directly over the site is creating another incision with its attendant risk of wound infection.Excise the terminal neuroma with a knife until healthy-appearing axons are visualized.The free nonvascularized skeletal muscle graft can be obtained from local muscle (preferred) or from a separate donor site. A separate donor site can introduce donor-site morbidity and complications, including hematoma and pain.The harvested skeletal muscle graft should ideally be approximately 35 mm long, 20 mm wide, and 5 mm thick in order to ensure survivability and to prevent central necrosis. The harvesting can be performed with curved Mayo scissors.The peripheral nerve should be implanted parallel to the direction of the muscle fibers, and the epineurium should be secured to the free muscle graft at 1 or 2 places. One suture should be utilized to tack the distal end of the epineurium to the middle of the bed of the muscle graft. Another suture should be utilized to start the wrapping of the muscle graft around the nerve using a bite through the muscle, a bite through the epineurium of the proximal end of the nerve, and another bite through the other muscle edge in order to form a cylindrical wrap around the nerve.Wrap the entire muscle graft by taking only bites of muscle graft around the nerve to secure the muscle graft in a cylindrical structure using 2 to 4 more sutures.Avoid locating the RPNI near weight-bearing surfaces of the residual limb when closing. The RPNI should be in the muscular tissue, deep to the subcutaneous tissue and dermis.Do perform intraneural dissection for large-caliber nerves to create several (normally 2 to 4) distinct RPNIs, to avoid too many regenerating axons in a single free muscle graft.

5.
Plast Reconstr Surg ; 153(2): 360-377, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37159906

RESUMO

SUMMARY: The scientific study of facial aging has transformed modern facial rejuvenation. As people age, fat loss in specific fat compartments is a major contributor to structural aging of the face. Autologous fat grafting is safe, abundant, readily available, and completely biocompatible, which makes it the preferred soft-tissue filler in the correction of facial atrophy. The addition of volume through fat grafting gives an aging face a more youthful, healthy, and aesthetic appearance. Harvesting and preparation with different cannula sizes and filter-cartridge techniques have allowed for fat grafts to be divided based on parcel size and cell type into three major subtypes: macrofat, microfat, and nanofat. Macrofat and microfat have the benefit of providing volume to restore areas of facial deflation and atrophy in addition to improving skin quality; nanofat has been shown to improve skin texture and pigmentation. In this article, the authors discuss the current opinions regarding fat grafting and how the evolving science of fat grafting has led to the clinical utility of each type of fat to optimize facial rejuvenation. The opportunity exists to individualize the use of autologous fat grafting with the various subtypes of fat for the targeted correction of aging in different anatomic areas of the face. Fat grafting has become a powerful tool that has revolutionized facial rejuvenation, and developing precise, individualized plans for autologous fat grafting for each patient is an important advancement in the evolution of facial rejuvenation.


Assuntos
Ritidoplastia , Envelhecimento da Pele , Humanos , Tecido Adiposo/transplante , Face/cirurgia , Rejuvenescimento , Ritidoplastia/métodos , Transplante Autólogo , Atrofia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38145529

RESUMO

Individuals with upper limb loss lack sensation of the missing hand, which can negatively impact their daily function. Several groups have attempted to restore this sensation through electrical stimulation of residual nerves. The purpose of this study was to explore the utility of regenerative peripheral nerve interfaces (RPNIs) in eliciting referred sensation. In four participants with upper limb loss, we characterized the quality and location of sensation elicited through electrical stimulation of RPNIs over time. We also measured functional stimulation ranges (sensory perception and discomfort thresholds), sensitivity to changes in stimulation amplitude, and ability to differentiate objects of different stiffness and sizes. Over a period of up to 54 months, stimulation of RPNIs elicited sensations that were consistent in quality (e.g. tingling, kinesthesia) and were perceived in the missing hand and forearm. The location of elicited sensation was partially-stable to stable in 13 of 14 RPNIs. For 5 of 7 RPNIs tested, participants demonstrated a sensitivity to changes in stimulation amplitude, with an average just noticeable difference of 45 nC. In a case study, one participant was provided RPNI stimulation proportional to prosthetic grip force. She identified four objects of different sizes and stiffness with 56% accuracy with stimulation alone and 100% accuracy when stimulation was combined with visual feedback of hand position. Collectively, these experiments suggest that RPNIs have the potential to be used in future bi-directional prosthetic systems.


Assuntos
Membros Artificiais , Nervos Periféricos , Feminino , Humanos , Nervos Periféricos/fisiologia , Extremidade Superior , Sensação , Mãos , Estimulação Elétrica
7.
Plast Reconstr Surg Glob Open ; 11(11): e5415, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38025619

RESUMO

Background: Opioid misuse after surgery remains a public health crisis in the United States. Recent efforts have focused on tracking pain medication use in surgical populations. However, accurate interpretations of medication use remain quite challenging given inconsistent usage of different datasets. The purpose of this study was to investigate the agreement between electronic medical records (EMR) versus patient self-reported use of pain medications in a surgical amputation population. Methods: Patients undergoing major lower extremity amputation or amputation-related procedures were included in this study. Both self-reported and EMR data for pain medication intake were obtained for each patient at three time points (preoperatively, 4 months postoperatively, and 12 months postoperatively). Percentage agreement and the kappa statistic were calculated for both usage (yes/no) and dose categories. Results: Forty-five patients were included in this study, resulting in 108 pairs of self-reported and EMR datasets. Substantial levels of agreement (>70% agreement, kappa >0.61) for opioid use was seen at preoperative and 12 months postoperative. However, agreement dropped at 4 months postoperatively. Anticonvulsant medication showed high levels, whereas acetaminophen showed lower levels of agreements at all time points. Conclusions: Either self-reported or EMR data may be used in research and clinical settings for preoperative or 12-month postoperative patients with little concern for discrepancies. However, at time points immediately following the expected end of acute surgical pain, self-reported data may be needed for more accurate medication reporting. With these findings in mind, usage of datasets should be driven by study objectives and the dataset's strength (eg, accuracy, ease, lack of bias).

8.
Plast Reconstr Surg ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37927033

RESUMO

SUMMARY: Innovations in the fields of prosthetic devices and neuroprosthetic control strategies have opened new frontiers for the treatment and rehabilitation of individuals undergoing amputation. Commercial prosthetic devices are now available with sophisticated electrical and mechanical components that can closely replicate the functions of the human musculoskeletal system. However, to truly recognize the potential of such prosthetic devices and develop the next generation of bionic limbs, a highly reliable prosthetic device control strategy is required. In the past few years, refined surgical techniques have enabled neuroprosthetic control strategies to record efferent motor and stimulate afferent sensory action potentials from a residual limb with extraordinary specificity, signal quality, and long-term stability. As a result, such control strategies are now capable of facilitating intuitive, real-time, and naturalistic prosthetic experiences for patients with amputations. This article summarizes the current state of upper extremity neuroprosthetic devices and discusses the leading control strategies that are critical to the ongoing advancement of prosthetic development and implementation.

9.
Plast Reconstr Surg Glob Open ; 11(7): e5127, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37465283

RESUMO

Regenerative peripheral nerve interface (RPNI) surgery has been demonstrated to be an effective tool as an interface for neuroprosthetics. Additionally, it has been shown to be a reproducible and reliable strategy for the active treatment and for prevention of neuromas. The purpose of this article is to provide a comprehensive review of RPNI surgery to demonstrate its simplicity and empower reconstructive surgeons to add this to their armamentarium. This article discusses the basic science of neuroma formation and prevention, as well as the theory of RPNI. An anatomic review and discussion of surgical technique for each level of amputation and considerations for other etiologies of traumatic neuromas are included. Lastly, the authors discuss the future of RPNI surgery and compare this with other active techniques for the treatment of neuromas.

11.
Neurosurgery ; 93(5): 1192-1201, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37227138

RESUMO

BACKGROUND: Treating neuroma pain is a clinical challenge. Identification of sex-specific nociceptive pathways allows a more individualized pain management. The Regenerative Peripheral Nerve Interface (RPNI) consists of a neurotized autologous free muscle using a severed peripheral nerve to provide physiological targets for the regenerating axons. OBJECTIVE: To evaluate prophylactic RPNI to prevent neuroma pain in male and female rats. METHODS: F344 rats of each sex were assigned to neuroma, prophylactic RPNI, or sham groups. Neuromas and RPNIs were created in both male and female rats. Weekly pain assessments including neuroma site pain and mechanical, cold, and thermal allodynia were performed for 8 weeks. Immunohistochemistry was used to evaluate macrophage infiltration and microglial expansion in the corresponding dorsal root ganglia and spinal cord segments. RESULTS: Prophylactic RPNI prevented neuroma pain in both sexes; however, female rats displayed delayed pain attenuation when compared with males. Cold allodynia and thermal allodynia were attenuated exclusively in males. Macrophage infiltration was mitigated in males, whereas females showed a reduced number of spinal cord microglia. CONCLUSION: Prophylactic RPNI can prevent neuroma site pain in both sexes. However, attenuation of both cold allodynia and thermal allodynia occurred in males exclusively, potentially because of their sexually dimorphic effect on pathological changes of the central nervous system.


Assuntos
Hiperalgesia , Neuroma , Ratos , Masculino , Feminino , Animais , Hiperalgesia/etiologia , Hiperalgesia/prevenção & controle , Ratos Endogâmicos F344 , Dor , Neuroma/prevenção & controle , Nervos Periféricos/fisiologia
12.
Ann Plast Surg ; 90(6S Suppl 5): S491-S494, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115851

RESUMO

BACKGROUND: The armamentarium of a plastic surgeon is vast, consisting of an array of surgical procedures from head to toe. Unfortunately, plastic surgeons have been losing portions of their operative domain to other surgical subspecialties for years. The number of subspecialties invading our niche is bothersome, but more concerning is the fact that losing the reins of these core procedures results in less surgical exposure and competency for plastic surgery residents.Lately, in academic institutions, otolaryngologists seem to be performing most rhinoplasty procedures, resulting in fewer surgeries performed by plastic surgeons. Trainees must perform 10 rhinoplasties to fulfill graduation requirements but, more importantly, residents should graduate feeling competent and confident performing rhinoplasties. The aims of this study are to determine the number of rhinoplasties being performed at academic centers each year and to evaluate the trend with regard to which specialties are performing these procedures. METHODS: Three academic institutions with plastic surgery and otolaryngology residency programs searched medical records for rhinoplasty Current Procedural Terminology codes from January 1, 2009, to December 31, 2019. The total numbers of rhinoplasties performed each year, by each specialty, were tallied. RESULTS: Growth rate in rhinoplasty volume among participating institutions ranged from 27% to 149%. At these institutions, plastic surgeons performed less than one third of all rhinoplasties. In 2009, 10% of rhinoplasties were performed by plastic surgeons at institution 1, 22% at institution 2, and 18% at institution 3. In 2019, the volume of rhinoplasties performed by plastic surgeons was 5%, 12%, and 27%, respectively. The 3 ENT departments had statistically significant increasing trends in rhinoplasty volume. Institutions 1 and 2's plastic surgery departments showed that negative volume trends, however, were not statistically significant. Institution 3's plastic surgery department has had an increasing trend, which was statistically significant. CONCLUSIONS: Otolaryngology is performing most rhinoplasties at several academic institutions. This is concerning for the education of plastic surgery trainees. Academic plastic surgeons must focus on increasing the number of rhinoplasties performed to adequately train residents this core procedure. If rhinoplasties are not made a priority now, this surgery may become a historic operation instead of a vital skill in plastic surgeons' armamentarium.


Assuntos
Internato e Residência , Otolaringologia , Procedimentos de Cirurgia Plástica , Rinoplastia , Cirurgiões , Cirurgia Plástica , Humanos , Rinoplastia/métodos , Cirurgia Plástica/educação , Otolaringologia/educação
13.
Ann Plast Surg ; 90(6): 631-635, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115944

RESUMO

ABSTRACT: Stiff skin syndrome (SSS) is a rare cutaneous disorder characterized by cutaneous fibrosis resulting in the early onset of thickened and indurated skin, joint mobility restrictions, and contractures. We describe a father and son with familial SSS who presented with bilateral exertional pain and a confirmed diagnosis of chronic exertional compartment syndrome on 4-compartment pressure testing. Patients experienced restored functionality with bilateral 4-compartment fasciotomy. Chronic exertional compartment syndrome should be considered in the differential diagnosis of patients with SSS and chronic pain of the lower limbs.


Assuntos
Síndromes Compartimentais , Contratura , Humanos , Masculino , Fasciotomia/métodos , Síndrome Compartimental Crônica do Esforço , Núcleo Familiar , Doença Crônica , Contratura/genética , Contratura/cirurgia , Pai , Síndromes Compartimentais/etiologia , Síndromes Compartimentais/cirurgia
14.
J Neural Eng ; 20(2)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37023743

RESUMO

Objective.Extracting signals directly from the motor system poses challenges in obtaining both high amplitude and sustainable signals for upper-limb neuroprosthetic control. To translate neural interfaces into the clinical space, these interfaces must provide consistent signals and prosthetic performance.Approach.Previously, we have demonstrated that the Regenerative Peripheral Nerve Interface (RPNI) is a biologically stable, bioamplifier of efferent motor action potentials. Here, we assessed the signal reliability from electrodes surgically implanted in RPNIs and residual innervated muscles in humans for long-term prosthetic control.Main results.RPNI signal quality, measured as signal-to-noise ratio, remained greater than 15 for up to 276 and 1054 d in participant 1 (P1), and participant 2 (P2), respectively. Electromyography from both RPNIs and residual muscles was used to decode finger and grasp movements. Though signal amplitude varied between sessions, P2 maintained real-time prosthetic performance above 94% accuracy for 604 d without recalibration. Additionally, P2 completed a real-world multi-sequence coffee task with 99% accuracy for 611 d without recalibration.Significance.This study demonstrates the potential of RPNIs and implanted EMG electrodes as a long-term interface for enhanced prosthetic control.


Assuntos
Membros Artificiais , Nervos Periféricos , Humanos , Reprodutibilidade dos Testes , Nervos Periféricos/fisiologia , Extremidade Superior , Eletromiografia/métodos , Eletrodos Implantados , Eletrodos
15.
Plast Reconstr Surg ; 151(5): 804e-813e, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729137

RESUMO

BACKGROUND: Without meaningful, intuitive sensory feedback, even the most advanced myoelectric devices require significant cognitive demand to control. The dermal sensory regenerative peripheral nerve interface (DS-RPNI) is a biological interface designed to establish high-fidelity sensory feedback from prosthetic limbs. METHODS: DS-RPNIs were constructed in rats by securing fascicles of residual sensory peripheral nerves into autologous dermal grafts, with the objectives of confirming regeneration of sensory afferents within DS-RPNIs and establishing the reliability of afferent neural response generation with either mechanical or electrical stimulation. RESULTS: Two months after implantation, DS-RPNIs were healthy and displayed well-vascularized dermis with organized axonal collaterals throughout and no evidence of neuroma. Electrophysiologic signals were recorded proximal from DS-RPNI's sural nerve in response to both mechanical and electrical stimuli and compared with (1) full-thickness skin, (2) deepithelialized skin, and (3) transected sural nerves without DS-RPNI. Mechanical indentation of DS-RPNIs evoked compound sensory nerve action potentials (CSNAPs) that were like those evoked during indentation of full-thickness skin. CSNAP firing rates and waveform amplitudes increased in a graded fashion with increased mechanical indentation. Electrical stimuli delivered to DS-RPNIs reliably elicited CSNAPs at low current thresholds, and CSNAPs gradually increased in amplitude with increasing stimulation current. CONCLUSIONS: These findings suggest that afferent nerve fibers successfully reinnervate DS-RPNIs, and that graded stimuli applied to DS-RPNIs produce proximal sensory afferent responses similar to those evoked from normal skin. This confirmation of graded afferent signal transduction through DS-RPNI neural interfaces validate DS-RPNI's potential role of facilitating sensation in human-machine interfacing. CLINICAL RELEVANCE STATEMENT: The DS-RPNI is a novel biotic-abiotic neural interface that allows for transduction of sensory stimuli into neural signals. It is expected to advance the restoration of natural sensation and development of sensorimotor control in prosthetics.


Assuntos
Retroalimentação Sensorial , Nervos Periféricos , Ratos , Humanos , Animais , Retroalimentação , Reprodutibilidade dos Testes , Nervos Periféricos/fisiologia , Nervo Sural , Regeneração Nervosa/fisiologia
16.
J Hand Surg Eur Vol ; 48(3): 182-190, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649123

RESUMO

Replacing human hand function with prostheses goes far beyond only recreating muscle movement with feedforward motor control. Natural sensory feedback is pivotal for fine dexterous control and finding both engineering and surgical solutions to replace this complex biological function is imperative to achieve prosthetic hand function that matches the human hand. This review outlines the nature of the problems underlying sensory restitution, the engineering methods that attempt to address this deficit and the surgical techniques that have been developed to integrate advanced neural interfaces with biological systems. Currently, there is no single solution to restore sensory feedback. Rather, encouraging animal models and early human studies have demonstrated that some elements of sensation can be restored to improve prosthetic control. However, these techniques are limited to highly specialized institutions and much further work is required to reproduce the results achieved, with the goal of increasing availability of advanced closed loop prostheses that allow sensory feedback to inform more precise feedforward control movements and increase functionality.


Assuntos
Membros Artificiais , Animais , Humanos , Extremidade Superior/cirurgia , Mãos/cirurgia , Mãos/fisiologia , Sensação , Retroalimentação Sensorial , Desenho de Prótese
17.
Skeletal Radiol ; 52(6): 1137-1157, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36547677

RESUMO

OBJECTIVE: To describe the ultrasound (US) appearance of regenerative peripheral nerve interfaces (RPNIs) in humans, and correlate clinically and with histologic findings from rat RPNI. MATERIALS AND METHODS: Patients (≥ 18 years) who had undergone RPNI surgery within our institution between the dates of 3/2018 and 9/2019 were reviewed. A total of 21 patients (15 male, 6 female, age 21-82 years) with technically adequate US studies of RPNIs were reviewed. Clinical notes were reviewed for the presence of persistent pain after RPNI surgery. Histologic specimens of RPNIs in a rat model from prior studies were compared with the US findings noted in this study. RESULTS: There was a variable appearance to the RPNIs including focal changes involving the distal nerve, nerve-muscle graft junction, and area of the distal sutures. The muscle grafts varied in thickness with accompanying variable echogenic changes. No interval change was noted on follow-up US studies. Diffuse hypoechoic swelling with loss of the fascicular structure of the nerve within the RPNI and focal hypoechoic changes at the nerve-muscle graft junction were associated with clinical outcomes. US findings corresponded to histologic findings in the rat RPNI. CONCLUSION: Ultrasound imaging can demonstrate various morphologic changes involving the nerve, muscle, and interface between these two biological components of RPNIs. These changes correspond to expected degenerative and regenerative processes following nerve resection and muscle reinnervation and should not be misconstrued as pathologic in all cases. N5 and N1 morphologic type changes of the RPNI were found to be associated with symptoms.


Assuntos
Regeneração Nervosa , Nervos Periféricos , Humanos , Ratos , Masculino , Feminino , Animais , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Nervos Periféricos/diagnóstico por imagem , Regeneração Nervosa/fisiologia , Músculos , Dor , Ultrassonografia
19.
Hand (N Y) ; 18(4): 543-552, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35130761

RESUMO

Autologous fat grafting (AFG) has traditionally been used for facial rejuvenation and soft tissue augmentation, but in recent years, its use has expanded to treat diseases of the hand. Autologous fat grafting is ideal for use in the hand because it is minimally invasive, can restore volume, and has regenerative capabilities. This review summarizes the emerging evidence regarding the safety and efficacy of AFG to the hand in several conditions, including systemic sclerosis, Dupuytren disease, osteoarthritis, burns, and traumatic fingertip injuries. A Preferred Reporting Items for Systematic Reviews and Meta-Analyses-compliant literature search on the use of AFG in hand pathologies was performed on October 8, 2020, in Ovid MEDLINE, Elsevier Embase, Clarivate Web of Science, and Wiley Cochrane Central Register of Controlled Trials. The retrieved hits were screened and reviewed by 2 independent reviewers and a third reviewer adjudicated when required. Reviewers identified 919 unique hits. Screening of the abstracts identified 22 manuscripts which described the use of AFG to treat an identified hand condition. Studies suggest AFG in the hands is a safe, noninvasive option for the management of systemic sclerosis, Dupuytren contracture, osteoarthritis, burns, and traumatic fingertip injuries. While AFG is a promising therapeutic option for autoimmune, inflammatory, and fibrotic disease manifestations in the hand, further studies are warranted to understand its efficacy and to establish more robust clinical guidelines. Studies to date show the regenerative, immunomodulatory, and volume-filling properties of AFG that facilitate wound healing and restoration of hand function with limited complications.


Assuntos
Tecido Adiposo , Cicatrização , Humanos , Tecido Adiposo/transplante , Transplante Autólogo , Autoenxertos , Mãos/cirurgia
20.
Ann Surg ; 277(3): e725-e729, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34387203

RESUMO

OBJECTIVE: To determine the impact of gender-affirming mastectomy on depression, anxiety, and body image. BACKGROUND: There are many cross-sectional and ad-hoc studies demonstrating the benefits of gender-affirming surgery. There are few prospective investigations of patient-reported outcomes in gender-affirming surgery using validated instruments. METHODS: In this prospective study, patients presenting to the University of Michigan for gender-affirming Mastectomy were surveyed preoperatively and 6-months postoperatively. Primary outcomes were patient-reported measurements of anxiety measured by General Anxiety Disorder-7, depression measured by Patient Health Questionnaire-9, body image measured by BODY-Q and Body Image Quality of Life Index, psychosocial and sexual functioning measured by BREAST-Q, and satisfaction with decision measured by BREAST-Q. Linear regression analysis was used to control for presence of complication and existing history of mental health conditions. RESULTS: A total of 70 patients completed the study. The average age of participants was 26.7. The mean Patient Health Questionnaire-9 score pre-operatively was 7.8 and postoperatively was 5.4 ( P =0.001). The mean preoperative and postoperative General Anxiety Disorder-7 scores were 7.6 and 4.6, respectively ( P <0.001). There were significant improvements in both psychosocial (35 to 79.2, P <0.001) and sexual (33.9 to 67.2, P< 0.001) functioning related to chest appearance as measured by the BREAST-Q and global psychosocial functioning (-15.6 to +32, P <0.001) as measured by the Body Image Quality of Life Index. Satisfaction with chest contour (14.3 to 93.8, P <0.001) and nipple appearance (29.3 to 85.9, P <0.001) measured by the BODY-Q significantly improved. Patients had a mean satisfaction with outcome score of 93.1. CONCLUSIONS: Patients undergoing gender-affirming mastectomy in this single-center prospective study reported significant improvements in anxiety, depression, body image, psychosocial, and sexual functioning after this procedure. Patients were extremely satisfied with the decision to undergo this operation.


Assuntos
Neoplasias da Mama , Mamoplastia , Humanos , Feminino , Mastectomia , Qualidade de Vida , Estudos Prospectivos , Neoplasias da Mama/cirurgia , Estudos Transversais , Satisfação do Paciente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...