Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Stem Cell ; 28(9): 1566-1581.e8, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33951478

RESUMO

The biological function and disease association of human endogenous retroviruses (HERVs) are largely elusive. HERV-K(HML-2) has been associated with neurotoxicity, but there is no clear understanding of its role or mechanistic basis. We addressed the physiological functions of HERV-K(HML-2) in neuronal differentiation using CRISPR engineering to activate or repress its expression levels in a human-pluripotent-stem-cell-based system. We found that elevated HERV-K(HML-2) transcription is detrimental for the development and function of cortical neurons. These effects are cell-type-specific, as dopaminergic neurons are unaffected. Moreover, high HERV-K(HML-2) transcription alters cortical layer formation in forebrain organoids. HERV-K(HML-2) transcriptional activation leads to hyperactivation of NTRK3 expression and other neurodegeneration-related genes. Direct activation of NTRK3 phenotypically resembles HERV-K(HML-2) induction, and reducing NTRK3 levels in context of HERV-K(HML-2) induction restores cortical neuron differentiation. Hence, these findings unravel a cell-type-specific role for HERV-K(HML-2) in cortical neuron development.


Assuntos
Retrovirus Endógenos , Diferenciação Celular , Humanos , Ativação Transcricional
3.
Cell Stem Cell ; 27(1): 35-49.e6, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32619517

RESUMO

Autism is a clinically heterogeneous neurodevelopmental disorder characterized by impaired social interactions, restricted interests, and repetitive behaviors. Despite significant advances in the genetics of autism, understanding how genetic changes perturb brain development and affect clinical symptoms remains elusive. Here, we present a multiplex human pluripotent stem cell (hPSC) platform, in which 30 isogenic disease lines are pooled in a single dish and differentiated into prefrontal cortex (PFC) lineages to efficiently test early-developmental hypotheses of autism. We define subgroups of autism mutations that perturb PFC neurogenesis and are correlated to abnormal WNT/ßcatenin responses. Class 1 mutations (8 of 27) inhibit while class 2 mutations (5 of 27) enhance PFC neurogenesis. Remarkably, autism patient data reveal that individuals carrying subclass-specific mutations differ clinically in their corresponding language acquisition profiles. Our study provides a framework to disentangle genetic heterogeneity associated with autism and points toward converging molecular and developmental pathways of diverse autism-associated mutations.


Assuntos
Transtorno Autístico , Transtornos do Neurodesenvolvimento , Células-Tronco Pluripotentes , Transtorno Autístico/genética , Diferenciação Celular/genética , Humanos , Neurogênese
4.
Nat Biotechnol ; 37(4): 436-444, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30936566

RESUMO

Human brain organoids generated with current technologies recapitulate histological features of the human brain, but they lack a reproducible topographic organization. During development, spatial topography is determined by gradients of signaling molecules released from discrete signaling centers. We hypothesized that introduction of a signaling center into forebrain organoids would specify the positional identity of neural tissue in a distance-dependent manner. Here, we present a system to trigger a Sonic Hedgehog (SHH) protein gradient in developing forebrain organoids that enables ordered self-organization along dorso-ventral and antero-posterior positional axes. SHH-patterned forebrain organoids establish major forebrain subdivisions that are positioned with in vivo-like topography. Consistent with its behavior in vivo, SHH exhibits long-range signaling activity in organoids. Finally, we use SHH-patterned cerebral organoids as a tool to study the role of cholesterol metabolism in SHH signaling. Together, this work identifies inductive signaling as an effective organizing strategy to recapitulate in vivo-like topography in human brain organoids.


Assuntos
Proteínas Hedgehog/metabolismo , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo , Animais , Biotecnologia , Padronização Corporal , Diferenciação Celular , Colesterol/metabolismo , Humanos , Camundongos , Modelos Neurológicos , Células-Tronco Neurais/metabolismo , Neurogênese , Organoides/citologia , Células-Tronco Pluripotentes/metabolismo , Prosencéfalo/citologia , Transdução de Sinais
5.
Cell Stem Cell ; 21(2): 274-283.e5, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28736217

RESUMO

Zika virus (ZIKV) infects fetal and adult human brain and is associated with serious neurological complications. To date, no therapeutic treatment is available to treat ZIKV-infected patients. We performed a high-content chemical screen using human pluripotent stem cell-derived cortical neural progenitor cells (hNPCs) and found that hippeastrine hydrobromide (HH) and amodiaquine dihydrochloride dihydrate (AQ) can inhibit ZIKV infection in hNPCs. Further validation showed that HH also rescues ZIKV-induced growth and differentiation defects in hNPCs and human fetal-like forebrain organoids. Finally, HH and AQ inhibit ZIKV infection in adult mouse brain in vivo. Strikingly, HH suppresses viral propagation when administered to adult mice with active ZIKV infection, highlighting its therapeutic potential. Our approach highlights the power of stem cell-based screens and validation in human forebrain organoids and mouse models in identifying drug candidates for treating ZIKV infection and related neurological complications in fetal and adult patients.


Assuntos
Antivirais/uso terapêutico , Encéfalo/virologia , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Organoides/virologia , Infecção por Zika virus/tratamento farmacológico , Zika virus/fisiologia , Adolescente , Alcaloides de Amaryllidaceae/farmacologia , Amodiaquina/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Criança , Feminino , Feto/efeitos dos fármacos , Feto/virologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Camundongos SCID , Células-Tronco Neurais/efeitos dos fármacos , Organoides/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Infecção por Zika virus/patologia
6.
J Neurosurg Spine ; 27(2): 189-197, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28574332

RESUMO

OBJECTIVE The authors of this study aimed to identify the incidence of and risk factors for preoperative deep venous thrombosis (DVT) in patients undergoing surgical treatment for spinal metastases. METHODS Univariate analysis of patient age, sex, ethnicity, laboratory values, comorbidities, preoperative ambulatory status, histopathological classification, spinal level, and surgical details was performed. Factors significantly associated with DVT univariately were entered into a multivariate logistic regression model. RESULTS The authors identified 314 patients, of whom 232 (73.9%) were screened preoperatively for a DVT. Of those screened, 22 (9.48%) were diagnosed with a DVT. The screened patients were older (median 62 vs 55 years, p = 0.0008), but otherwise similar in baseline characteristics. Nonambulatory status, previous history of DVT, lower partial thromboplastin time, and lower hemoglobin level were statistically significant and independent factors associated with positive results of screening for a DVT. Results of screening were positive in only 6.4% of ambulatory patients in contrast to 24.4% of nonambulatory patients, yielding an odds ratio of 4.73 (95% CI 1.88-11.90). All of the patients who had positive screening results underwent preoperative placement of an inferior vena cava filter. CONCLUSIONS Patients requiring surgery for spinal metastases represent a population with unique risks for venous thromboembolism. This study showed a 9.48% incidence of DVT in patients screened preoperatively. The highest rates of preoperative DVT were identified in nonambulatory patients, who were found to have a 4-fold increase in the likelihood of harboring a DVT. Understanding the preoperative thrombotic status may provide an opportunity for early intervention and risk stratification in this critically ill population.


Assuntos
Neoplasias da Coluna Vertebral/epidemiologia , Neoplasias da Coluna Vertebral/secundário , Trombose Venosa/epidemiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Humanos , Incidência , Funções Verossimilhança , Masculino , Pessoa de Meia-Idade , Atividade Motora , Período Pré-Operatório , Estudos Retrospectivos , Fatores de Risco , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Neoplasias da Coluna Vertebral/cirurgia , Ultrassonografia Doppler , Trombose Venosa/sangue , Trombose Venosa/diagnóstico por imagem , Adulto Jovem
7.
J Neurosci ; 33(15): 6321-32, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23575831

RESUMO

The mammalian neocortex is parcellated into anatomically and functionally distinct areas. The establishment of area-specific neuronal diversity and circuit connectivity enables distinct neocortical regions to control diverse and specialized functional outputs, yet underlying molecular controls remain largely unknown. Here, we identify a central role for the transcriptional regulator Lim-only 4 (Lmo4) in establishing the diversity of neuronal subtypes within rostral mouse motor cortex, where projection neurons have particularly diverse and multi-projection connectivity compared with caudal motor cortex. In rostral motor cortex, we report that both subcerebral projection neurons (SCPN), which send projections away from the cerebrum, and callosal projection neurons (CPN), which send projections to contralateral cortex, express Lmo4, whereas more caudal SCPN and CPN do not. Lmo4-expressing SCPN and CPN populations are comprised of multiple hodologically distinct subtypes. SCPN in rostral layer Va project largely to brainstem, whereas SCPN in layer Vb project largely to spinal cord, and a subset of both rostral SCPN and CPN sends second ipsilateral caudal (backward) projections in addition to primary projections. Without Lmo4 function, the molecular identity of neurons in rostral motor cortex is disrupted and more homogenous, rostral layer Va SCPN aberrantly project to the spinal cord, and many dual-projection SCPN and CPN fail to send a second backward projection. These molecular and hodological disruptions result in greater overall homogeneity of motor cortex output. Together, these results identify Lmo4 as a central developmental control over the diversity of motor cortex projection neuron subpopulations, establishing their area-specific identity and specialized connectivity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Tronco Encefálico/anatomia & histologia , Proteínas com Domínio LIM/fisiologia , Córtex Motor/anatomia & histologia , Neurônios/metabolismo , Medula Espinal/anatomia & histologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Corpo Caloso/anatomia & histologia , Corpo Caloso/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Proteínas com Domínio LIM/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Córtex Motor/metabolismo , Vias Neurais/anatomia & histologia , Neurônios/citologia
8.
Hum Mol Genet ; 21(26): 5484-99, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23001566

RESUMO

Microtubules are essential components of axon guidance machinery. Among ß-tubulin mutations, only those in TUBB3 have been shown to cause primary errors in axon guidance. All identified mutations in TUBB2B result in polymicrogyria, but it remains unclear whether TUBB2B mutations can cause axon dysinnervation as a primary phenotype. We have identified a novel inherited heterozygous missense mutation in TUBB2B that results in an E421K amino acid substitution in a family who segregates congenital fibrosis of the extraocular muscles (CFEOM) with polymicrogyria. Diffusion tensor imaging of brains of affected family members reveals aberrations in the trajectories of commissural projection neurons, implying a paucity of homotopic connections. These observations led us to ask whether axon dysinnervation is a primary phenotype, and why the E421K, but not other, TUBB2B substitutions cause CFEOM. Expression of exogenous Tubb2b-E421K in developing callosal projection neurons is sufficient to perturb homotopic connectivity, without affecting neuronal production or migration. Using in vitro biochemical assays and yeast genetics, we find that TUBB2B-E421K αß-heterodimers are incorporated into the microtubule network where they alter microtubule dynamics and can reduce kinesin localization. These data provide evidence that TUBB2B mutations can cause primary axon dysinnervation. Interestingly, by incorporating into microtubules and altering their dynamic properties, the E421K substitution behaves differently than previously identified TUBB2B substitutions, providing mechanistic insight into the divergence between resulting phenotypes. Together with previous studies, these findings highlight that ß-tubulin isotypes function in both conserved and divergent ways to support proper human nervous system development.


Assuntos
Cinesinas/metabolismo , Malformações do Desenvolvimento Cortical/genética , Músculos Oculomotores/patologia , Tubulina (Proteína)/genética , Alelos , Substituição de Aminoácidos/genética , Axônios/metabolismo , Encéfalo/anormalidades , Encéfalo/metabolismo , Feminino , Fibrose , Heterozigoto , Humanos , Cinesinas/genética , Masculino , Malformações do Desenvolvimento Cortical/patologia , Microtúbulos/genética , Microtúbulos/metabolismo , Mutação de Sentido Incorreto , Neurogênese , Neurônios/metabolismo , Neurônios/fisiologia , Linhagem , Fenótipo , Ligação Proteica , Tubulina (Proteína)/metabolismo
9.
Curr Opin Genet Dev ; 21(3): 286-94, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21292473

RESUMO

A spectrum of neurological disorders characterized by abnormal neuronal migration, differentiation, and axon guidance and maintenance have recently been attributed to missense and splice-site mutations in the genes that encode α-tubulin and ß-tubulin isotypes TUBA1A, TUBA8, TUBB2B, and TUBB3, all of which putatively coassemble into neuronal microtubules. The resulting nervous system malformations can include different types of cortical malformations, defects in commissural fiber tracts, and degeneration of motor and sensory axons. Many clinical phenotypes and brain malformations are shared among the various mutations regardless of structural location and/or isotype, while others segregate with distinct amino acids or functional domains within tubulin. Collectively, these disorders provide novel paradigms for understanding the biological functions of microtubules and their core components in normal health and disease.


Assuntos
Doenças do Sistema Nervoso/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Humanos , Microtúbulos/fisiologia , Mutação de Sentido Incorreto , Neurônios/fisiologia , Fenótipo , Sítios de Splice de RNA/genética
10.
Cereb Cortex ; 19 Suppl 1: i62-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19366868

RESUMO

Molecular controls over the development of the exceptional neuronal subtype diversity of the cerebral cortex are now beginning to be identified. The initial subtype fate decision early in the life of a neuron, and the malleability of this fate when the balance of key postmitotic signals is modified, reveals not only that a neuron is deterministically set on a general developmental path at its birth, but also that this program must be precisely executed during postmitotic differentiation. Here, we show that callosal projection neurons (CPN) and subcerebral projection neurons (subcerebral PN) in layer V of the neocortex share aspects of molecular identity after their birth that are progressively resolved during differentiation. The LIM-homeodomain-related genes Lmo4 and Clim1 are initially expressed by both CPN and subcerebral PN in layer V, and only during mid to late differentiation does expression of Lmo4 and Clim1 become largely segregated into distinct neuronal subtypes. This progressive postmitotic resolution of molecular identity reveals similarities and possibly shared evolutionary origin between layer V CPN and subcerebral PN, and provides insight into how and when these neuronal subtypes achieve their distinct identities during cortical development.


Assuntos
Proteínas de Homeodomínio/metabolismo , Neocórtex/citologia , Neocórtex/embriologia , Neurônios/citologia , Neurônios/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas com Domínio LIM , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/fisiologia , Rede Nervosa/citologia , Rede Nervosa/embriologia , Rede Nervosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...