Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38645035

RESUMO

Phosphoethanolamine (pEtN) cellulose is a naturally occurring modified cellulose produced by several Enterobacteriaceae. The minimal components of the E. coli cellulose synthase complex include the catalytically active BcsA enzyme, an associated periplasmic semicircle of hexameric BcsB, as well as the outer membrane (OM)-integrated BcsC subunit containing periplasmic tetratricopeptide repeats (TPR). Additional subunits include BcsG, a membrane-anchored periplasmic pEtN transferase associated with BcsA, and BcsZ, a conserved periplasmic cellulase of unknown biological function. While events underlying the synthesis and translocation of cellulose by BcsA are well described, little is known about its pEtN modification and translocation across the cell envelope. We show that the N-terminal cytosolic domain of BcsA positions three copies of BcsG near the nascent cellulose polymer. Further, the terminal subunit of the BcsB semicircle tethers the N-terminus of a single BcsC protein to establish a trans-envelope secretion system. BcsC's TPR motifs bind a putative cello-oligosaccharide near the entrance to its OM pore. Additionally, we show that only the hydrolytic activity of BcsZ but not the subunit itself is necessary for cellulose secretion, suggesting a secretion mechanism based on enzymatic removal of mislocalized cellulose. Lastly, we introduce pEtN modification of cellulose in orthogonal cellulose biosynthetic systems by protein engineering.

2.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659787

RESUMO

Bacteria often experience nutrient limitation in nature and the laboratory. While exponential and stationary growth phases are well characterized in the model bacterium Escherichia coli, little is known about what transpires inside individual cells during the transition between these two phases. Through quantitative cell imaging, we found that the position of nucleoids and cell division sites becomes increasingly asymmetric during transition phase. These asymmetries were coupled with spatial reorganization of proteins, ribosomes, and RNAs to nucleoid-centric localizations. Results from live-cell imaging experiments, complemented with genetic and 13C whole-cell nuclear magnetic resonance spectroscopy studies, show that preferential accumulation of the storage polymer glycogen at the old cell pole leads to the observed rearrangements and asymmetric divisions. In vitro experiments suggest that these phenotypes are likely due to the propensity of glycogen to phase separate in crowded environments, as glycogen condensates exclude fluorescent proteins under physiological crowding conditions. Glycogen-associated differences in cell sizes between strains and future daughter cells suggest that glycogen phase separation allows cells to store large glucose reserves without counting them as cytoplasmic space.

3.
ACS Infect Dis ; 10(2): 384-397, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38252999

RESUMO

The global challenge of antibiotic resistance necessitates the introduction of more effective antibiotics. Here we report a potentially general design strategy, exemplified with vancomycin, that improves and expands antibiotic performance. Vancomycin is one of the most important antibiotics in use today for the treatment of Gram-positive infections. However, it fails to eradicate difficult-to-treat biofilm populations. Vancomycin is also ineffective in killing Gram-negative bacteria due to its inability to breach the outer membrane. Inspired by our seminal studies on cell penetrating guanidinium-rich transporters (e.g., octaarginine), we recently introduced vancomycin conjugates that effectively eradicate Gram-positive biofilm bacteria, persister cells and vancomycin-resistant enterococci (with V-r8, vancomycin-octaarginine), and Gram-negative pathogens (with V-R, vancomycin-arginine). Having shown previously that the spatial array (linear versus dendrimeric) of multiple guanidinium groups affects cell permeation, we report here for the first time vancomycin conjugates with dendrimerically displayed guanidinium groups that exhibit superior efficacy and breadth, presenting the best activity of V-r8 and V-R in single broad-spectrum compounds active against ESKAPE pathogens. Mode-of-action studies reveal cell-surface activity and enhanced vancomycin-like killing. The vancomycin-polyguanidino dendrimer conjugates exhibit no acute mammalian cell toxicity or hemolytic activity. Our study introduces a new class of broad-spectrum vancomycin derivatives and a general strategy to improve or expand antibiotic performance through combined mode-of-action and function-oriented design studies.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Biofilmes , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Guanidina/farmacologia , Mamíferos , Staphylococcus aureus , Vancomicina/farmacologia
4.
J Magn Reson Open ; 16-172023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125335

RESUMO

Tuberculosis and non-tuberculosis mycobacterial infections are rising each year and often result in chronic incurable disease. Important antibiotics target cell-wall biosynthesis, yet some mycobacteria are alarmingly resistant or tolerant to currently available antibiotics. This resistance is often attributed to assumed differences in composition of the complex cell wall of different mycobacterial strains and species. However, due to the highly crosslinked and insoluble nature of mycobacterial cell walls, direct comparative determinations of cell-wall composition pose a challenge to analysis through conventional biochemical analyses. We introduce an approach to directly observe the chemical composition of mycobacterial cell walls using solid-state NMR spectroscopy. 13C CPMAS spectra are provided of individual components (peptidoglycan, arabinogalactan, and mycolic acids) and of in situ cell-wall complexes. We assigned the spectroscopic contributions of each component in the cell-wall spectrum. We uncovered a higher arabinogalactan-to-peptidoglycan ratio in the cell wall of M. abscessus, an organism noted for its antibiotic resistance, relative to M. smegmatis. Furthermore, differentiating influences of different types of cell-wall targeting antibiotics were observed in spectra of antibiotic-treated whole cells. This platform will be of value in evaluating cell-wall composition and antibiotic activity among different mycobacteria and in considering the most effective combination treatment regimens.

5.
J Med Chem ; 66(15): 10226-10237, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37477249

RESUMO

Drug resistant bacterial infections have emerged as one of the greatest threats to public health. The discovery and development of new antimicrobials and anti-infective strategies are urgently needed to address this challenge. Vancomycin is one of the most important antibiotics for the treatment of Gram-positive infections. Here, we introduce the vancomycin-arginine conjugate (V-R) as a highly effective antimicrobial against actively growing mycobacteria and difficult-to-treat mycobacterial biofilm populations. Further improvement in efficacy through combination treatment of V-R to inhibit peptidoglycan synthesis and ethambutol to inhibit arabinogalactan synthesis underscores the ability to identify compound synergies to more effectively target the Achilles heel of the cell-wall assembly. Moreover, we introduce mechanistic activity data and a molecular model derived from a d-Ala-d-Ala-bound vancomycin structure that we hypothesize underlies the molecular basis for the antibacterial improvement attributed to the arginine modification that is specific to peptidoglycan chemistry employed by mycobacteria and distinct from Gram-positive pathogens.


Assuntos
Mycobacterium , Vancomicina , Vancomicina/farmacologia , Vancomicina/química , Peptidoglicano/química , Arginina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
6.
RSC Med Chem ; 14(6): 1192-1198, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37360389

RESUMO

The introduction of new and improved antibacterial agents based on facile synthetic modifications of existing antibiotics represents a promising strategy to deliver urgently needed antibacterial candidates to treat multi-drug resistant bacterial infections. Using this strategy, vancomycin was transformed into a highly active agent against antibiotic-resistant Gram-negative organisms in vitro and in vivo through the addition of a single arginine to yield vancomycin-arginine (V-R). Here, we report detection of the accumulation of V-R in E. coli by whole-cell solid-state NMR using 15N-labeled V-R. 15N CPMAS NMR revealed that the conjugate remained fully amidated without loss of arginine, demonstrating that intact V-R represents the active antibacterial agent. Furthermore, C{N}REDOR NMR in whole cells with all carbons at natural abundance 13C levels exhibited the sensitivity and selectivity to detect the directly bonded 13C-15N pairs of V-R within E. coli cells. Thus, we also present an effective methodology to directly detect and evaluate active drug agents and their accumulation within bacteria without the need for potentially perturbative cell lysis and analysis protocols.

7.
Chembiochem ; 24(18): e202300266, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37195016

RESUMO

Escherichia coli and other Enterobacteriaceae thrive in robust biofilm communities through the coproduction of curli amyloid fibers and phosphoethanolamine cellulose. Curli promote adhesion to abiotic surfaces and plant and human host tissues and are associated with pathogenesis in urinary tract infection and food-borne illness. The production of curli in the host has also been implicated in the pathogenesis of neurodegenerative diseases. We report that the natural product nordihydroguaiaretic acid (NDGA) is effective as a curlicide in E. coli. NDGA prevents CsgA polymerization in vitro in a dose-dependent manner. NDGA selectively inhibits cell-associated curli assembly and inhibits uropathogenic E. coli biofilm formation. More broadly, this work emphasizes the ability to evaluate and identify bioactive amyloid assembly inhibitors by using the powerful gene-directed amyloid biogenesis machinery in E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Masoprocol/farmacologia , Polimerização , Amiloide/farmacologia , Proteínas Amiloidogênicas , Biofilmes , Proteínas de Bactérias/farmacologia
8.
ACS Cent Sci ; 8(10): 1376-1379, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36313163
9.
Cell Rep ; 39(4): 110758, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476986

RESUMO

Urinary tract infections (UTIs) are a cause for alarm given the high rates of treatment failure. In a recent issue of Cell Reports, Pang et al. uncovered dueling molecular machinery at the host-pathogen interface in response to phosphate that points to new anti-infective strategies against UTIs.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Feminino , Humanos , Masculino , Escherichia coli Uropatogênica/fisiologia , Urotélio
10.
J Mol Biol ; 434(5): 167456, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35045329

RESUMO

The metamorphosis of a caterpillar into a butterfly is an awe-inspiring example of how extraordinary functions are made possible through specific chemistry in nature's complex systems. The chrysalis exoskeleton is revealed and shed as a caterpillar transitions to butterfly form. We employed solid-state NMR to evaluate the chemical composition and types of biomolecules in the chrysalides from which Monarch and Swallowtail butterflies emerged. The chrysalis composition was remarkably similar between Monarch and Swallowtail. Chitin is the major polysaccharide component, present together with proteins and catechols or catechol-type linkages in each chrysalis. The high chitin content is comparable to the highest chitin-containing insect exoskeletons. Proteomics analyses indicated the presence of chitinases that could be involved in synthesis and remodeling of the chrysalis as well as cuticular proteins which play a role in the structural integrity of the chrysalis. The nearly identical 13C CPMAS NMR spectra of each chrysalis and similar structural proteins supports the presence of underlying design principles integrating chitin and protein partners to elaborate the chrysalis.


Assuntos
Borboletas , Quitina , Pupa , Animais , Borboletas/química , Borboletas/crescimento & desenvolvimento , Quitina/análise , Quitina/metabolismo , Quitinases/análise , Quitinases/metabolismo , Proteínas de Insetos/análise , Proteínas de Insetos/metabolismo , Pupa/química
11.
J Bacteriol ; 203(24): e0040321, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34606371

RESUMO

The alphaproteobacterium Sinorhizobium meliloti secretes two acidic exopolysaccharides (EPSs), succinoglycan (EPSI) and galactoglucan (EPSII), which differentially enable it to adapt to a changing environment. Succinoglycan is essential for invasion of plant hosts and, thus, for the formation of nitrogen-fixing root nodules. Galactoglucan is critical for population-based behaviors such as swarming and biofilm formation and can facilitate invasion in the absence of succinoglycan on some host plants. The biosynthesis of galactoglucan is not as completely understood as that of succinoglycan. We devised a pipeline to identify putative pyruvyltransferase and acetyltransferase genes, construct genomic deletions in strains engineered to produce either succinoglycan or galactoglucan, and analyze EPS from mutant bacterial strains. EPS samples were examined by 13C cross-polarization magic-angle spinning (CPMAS) solid-state nuclear magnetic resonance (NMR). CPMAS NMR is uniquely suited to defining chemical composition in complex samples and enables the detection and quantification of distinct EPS functional groups. Galactoglucan was isolated from mutant strains with deletions in five candidate acyl/acetyltransferase genes (exoZ, exoH, SMb20810, SMb21188, and SMa1016) and a putative pyruvyltransferase (wgaE or SMb21322). Most samples were similar in composition to wild-type EPSII by CPMAS NMR analysis. However, galactoglucan produced from a strain lacking wgaE exhibited a significant reduction in pyruvylation. Pyruvylation was restored through the ectopic expression of plasmid-borne wgaE. Our work has thus identified WgaE as a galactoglucan pyruvyltransferase. This exemplifies how the systematic combination of genetic analyses and solid-state NMR detection is a rapid means to identify genes responsible for modification of rhizobial exopolysaccharides. IMPORTANCE Nitrogen-fixing bacteria are crucial for geochemical cycles and global nitrogen nutrition. Symbioses between legumes and rhizobial bacteria establish root nodules, where bacteria convert dinitrogen to ammonia for plant utilization. Secreted exopolysaccharides (EPSs) produced by Sinorhizobium meliloti (succinoglycan and galactoglucan) play important roles in soil and plant environments. The biosynthesis of galactoglucan is not as well characterized as that of succinoglycan. We employed solid-state nuclear magnetic resonance (NMR) to examine intact EPS from wild-type and mutant S. meliloti strains. NMR analysis of EPS isolated from a wgaE gene mutant revealed a novel pyruvyltransferase that modifies galactoglucan. Few EPS pyruvyltransferases have been characterized. Our work provides insight into the biosynthesis of an important S. meliloti EPS and expands the knowledge of enzymes that modify polysaccharides.


Assuntos
Proteínas de Bactérias/metabolismo , Polissacarídeos Bacterianos/metabolismo , Transferases/metabolismo , Proteínas de Bactérias/genética , Galactanos/química , Galactanos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucanos/química , Glucanos/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Mutação , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/genética , Sinorhizobium meliloti , Transferases/classificação , Transferases/genética
12.
Nat Struct Mol Biol ; 28(3): 310-318, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33712813

RESUMO

Cellulose is frequently found in communities of sessile bacteria called biofilms. Escherichia coli and other enterobacteriaceae modify cellulose with phosphoethanolamine (pEtN) to promote host tissue adhesion. The E. coli pEtN cellulose biosynthesis machinery contains the catalytic BcsA-B complex that synthesizes and secretes cellulose, in addition to five other subunits. The membrane-anchored periplasmic BcsG subunit catalyzes pEtN modification. Here we present the structure of the roughly 1 MDa E. coli Bcs complex, consisting of one BcsA enzyme associated with six copies of BcsB, determined by single-particle cryo-electron microscopy. BcsB homo-oligomerizes primarily through interactions between its carbohydrate-binding domains as well as intermolecular beta-sheet formation. The BcsB hexamer creates a half spiral whose open side accommodates two BcsG subunits, directly adjacent to BcsA's periplasmic channel exit. The cytosolic BcsE and BcsQ subunits associate with BcsA's regulatory PilZ domain. The macrocomplex is a fascinating example of cellulose synthase specification.


Assuntos
Celulose/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Biocatálise , Microscopia Crioeletrônica , Proteínas de Escherichia coli/ultraestrutura , Modelos Moleculares , Complexos Multienzimáticos/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Reprodutibilidade dos Testes
13.
Artigo em Inglês | MEDLINE | ID: mdl-33468474

RESUMO

The ability of vancomycin-arginine (V-r) to extend the spectrum of activity of glycopeptides to Gram-negative bacteria was investigated. Its MIC towards Escherichia coli, including ß-lactamase expressing Ambler classes A, B, and D, was 8 to 16 µg/ml. Addition of 8 times the MIC of V-r to E. coli was acutely bactericidal and associated with a low frequency of resistance (<2.32 × 10-10). In vivo, V-r markedly reduced E. coli burden by >7 log10 CFU/g in a thigh muscle model. These data warrant further development of V-r in combatting E. coli, including resistant forms.


Assuntos
Escherichia coli , Vancomicina , Antibacterianos/farmacologia , Arginina , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Vancomicina/farmacologia
14.
Biopolymers ; 112(1): e23395, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32894594

RESUMO

Bacterial biofilms are communities of bacteria entangled in a self-produced extracellular matrix (ECM). Escherichia coli direct the assembly of two insoluble biopolymers, curli amyloid fibers, and phosphoethanolamine (pEtN) cellulose, to build remarkable biofilm architectures. Intense curiosity surrounds how bacteria harness these amyloid-polysaccharide composites to build biofilms, and how these biopolymers function to benefit bacterial communities. Defining ECM composition involving insoluble polymeric assemblies poses unique challenges to analysis and, thus, to comparing strains with quantitative ECM molecular correlates. In this work, we present results from a sum-of-the-parts 13 C solid-state nuclear magnetic resonance (NMR) analysis to define the curli-to-pEtN cellulose ratio in the isolated ECM of the E. coli laboratory K12 strain, AR3110. We compare and contrast the compositional analysis and comprehensive biofilm phenotypes for AR3110 and a well-studied clinical isolate, UTI89. The ECM isolated from AR3110 contains approximately twice the amount of pEtN cellulose relative to curli content as UTI89, revealing plasticity in matrix assembly principles among strains. The two parent strains and a panel of relevant gene mutants were investigated in three biofilm models, examining: (a) macrocolonies on agar, (b) pellicles at the liquid-air interface, and (c) biomass accumulation on plastic. We describe the influence of curli, cellulose, and the pEtN modification on biofilm phenotypes with power in the direct comparison of these strains. The results suggest that curli more strongly influence adhesion, while pEtN cellulose drives cohesion. Their individual and combined influence depends on both the biofilm modality (agar, pellicle, or plastic-associated) and the strain itself.


Assuntos
Proteínas de Bactérias/química , Biofilmes , Celulose/química , Matriz Extracelular/química , Biomassa , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Escherichia coli/isolamento & purificação , Escherichia coli/fisiologia , Etanolaminas/química
15.
Nat Chem ; 13(1): 41-46, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33349696

RESUMO

Polymer mechanochemistry has traditionally been employed to study the effects of mechanical force on chemical bonds within a polymer backbone or to generate force-responsive materials. It is under-exploited for the scalable synthesis of wholly new materials by chemically transforming the polymers, especially products inaccessible by other means. Here we utilize polymer mechanochemistry to synthesize a fluorinated polyacetylene, a long-sought-after air-stable polyacetylene that has eluded synthesis by conventional means. We construct the monomer in four chemical steps on gram scale, which involves a rapid incorporation of fluorine atoms in an exotic photochemical cascade whose mechanism and exquisite stereoselectivity were informed by computation. After polymerization, force activation by ultrasonication produces a gold-coloured, semiconducting fluoropolymer. This work demonstrates that polymer mechanochemistry is a valuable synthetic tool for accessing materials on a preparative scale.

17.
J Am Chem Soc ; 142(34): 14619-14626, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786795

RESUMO

Pursuing polymers that can transform from a nonconjugated to a conjugated state under mechanical stress to significantly change their properties, we developed a new generation of ladder-type mechanophore monomers, bicyclo[2.2.0]hex-5-ene-peri-naphthalene (BCH-Naph), that can be directly and efficiently polymerized by ring-opening metathesis polymerization (ROMP). BCH-Naphs can be synthesized in multigram quantities and functionalized with a wide range of electron-rich and electron-poor substituents, allowing tuning of the optoelectronic and physical properties of mechanically generated conjugated polymers. Efficient ROMP of BCH-Naphs yielded ultrahigh molecular weight polymechanophores with controlled MWs and low dispersity. The resulting poly(BCH-Naph)s can be mechanically activated into conjugated polymers using ultrasonication, grinding, and even simple stirring of the dilute solutions, leading to changes in absorption and fluorescence. Poly(BCH-Naph)s represent an attractive polymechanophore system to explore multifaceted mechanical response in solution and solid states, owing to the synthetic scalability, functional diversity, efficient polymerization, and facile mechanoactivation.

18.
J Bacteriol ; 202(13)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32312746

RESUMO

Bacterial biofilms are surface-associated communities of bacterial cells enmeshed in an extracellular matrix (ECM). The biofilm lifestyle results in physiological heterogeneity across the community, promotes persistence, and protects cells from external insults such as antibiotic treatment. Escherichia coli was recently discovered to produce a chemically modified form of cellulose, phosphoethanolamine (pEtN) cellulose, which contributes to the formation of its extracellular matrix and elaboration of its hallmark wrinkled macrocolony architectures. Both pEtN cellulose and unmodified cellulose bind dyes such as calcofluor white and Congo red (CR). Here, we present the use of CR fluorescence to distinguish between pEtN cellulose and unmodified cellulose producers. We demonstrate the utility of this tool in the evaluation of a uropathogenic E. coli clinical isolate that appeared to produce curli and a cellulosic component but did not exhibit macrocolony wrinkling. We determined that lack of macrocolony wrinkling was attributed to a single-nucleotide mutation and introduction of a stop codon in bcsG, abrogating production of BcsG, the pEtN transferase. Thus, this work underscores the important contribution of the pEtN cellulose modification to the E. coli agar-based macrocolony wrinkling phenotype and introduces a facile approach to distinguish between modified and unmodified cellulose.IMPORTANCEE. coli bacteria produce amyloid fibers, termed curli, and a cellulosic component to assemble biofilm communities. Cellulose is the most abundant biopolymer on Earth, and we recently discovered that the cellulosic component in E. coli biofilms was not standard cellulose, but a newly identified cellulosic polymer, phosphoethanolamine cellulose. Studies involving the biological and functional impact of this cellulose modification among E. coli and other organisms are just beginning. Convenient methods for distinguishing pEtN cellulose from unmodified cellulose in E. coli and for estimating production are needed to facilitate further research. Dissecting the balance of pEtN cellulose and curli production by E. coli commensal strains and clinical isolates will improve our understanding of the host microbiome and of factors contributing to bacterial pathogenesis.


Assuntos
Celulose/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Etanolaminas/metabolismo , Coloração e Rotulagem/métodos , Celulose/química , Vermelho Congo/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Etanolaminas/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fluorescência
19.
Colloids Surf B Biointerfaces ; 188: 110786, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31954270

RESUMO

Biofilm is the dominant microbial form found in nature, in which bacterial species are embedded in a self-produced extracellular matrix (ECM). These complex microbial communities are responsible for several infections when they involve multispecies pathogenic bacteria. In previous studies, interfacial rheology proved to be a unique quantitative technique to follow in real-time the biofilm formation at the air-liquid interface. In this work, we studied a model system composed of two bacteria pathogenic capable of forming a pellicle biofilm, V. cholerae and E. coli. We used an integrated approach by combining a real-time quantitative analysis of the biofilm rheological properties, with the investigation of major matrix components and the pellicle microstructure. The results highlight the competition for the interface between the two species, driven by the biofilm formation growth rate. In the dual-species biofilm, the viscoelastic properties were dominated by V. cholera, which formed a mature biofilm 18 h faster than E. coli. The microstructure of the dual-species biofilm revealed a similar morphology to V. cholerae alone when both bacteria were initially added at the same amount. The analysis of some major ECM components showed that E. coli was not able to produce curli in the presence of V. cholerae, unless enough time was given for E. coli to colonize the air-liquid interface first. E. coli secreted phosphoethanolamine (pEtN) cellulose in the dual-species biofilm, but did not form a filamentous structure. Our pathogenic model system demonstrated the importance of the biofilm growth rate for multispecies biofilm composition at the air-liquid interface.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/metabolismo , Vibrio cholerae/metabolismo , Ar , Escherichia coli/crescimento & desenvolvimento , Tamanho da Partícula , Estresse Mecânico , Propriedades de Superfície , Vibrio cholerae/crescimento & desenvolvimento
20.
ACS Chem Biol ; 14(9): 2065-2070, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31479234

RESUMO

The emergence of multi-drug-resistant Gram-negative bacteria, including carbapenem-resistant Enterobacteriaceae, is a major health problem that necessitates the development of new antibiotics. Vancomycin inhibits cell-wall synthesis in Gram-positive bacteria but is generally ineffective against Gram-negative bacteria and is unable to penetrate the outer membrane barrier. In an effort to determine whether vancomycin and other antibiotics effective against Gram-positive bacteria could, through modification, be rendered effective against Gram-negative bacteria, we discovered that the covalent attachment of a single arginine to vancomycin yielded conjugates with order-of-magnitude improvements in activity against Gram-negative bacteria, including pathogenic E. coli. The vancomycin-arginine conjugate (V-R) exhibited efficacy against actively growing bacteria, induced the loss of rod cellular morphology, and resulted in the intracellular accumulation of peptidoglycan precursors, all consistent with cell-wall synthesis disruption as its mechanism of action. Membrane permeabilization studies demonstrated an enhanced outer membrane permeability of V-R as compared with vancomycin. The conjugate exhibited no mammalian cell toxicity or hemolytic activity in MTT and hemolysis assays. Our study introduces a new vancomycin derivative effective against Gram-negative bacteria and underscores the broader potential of generating new antibiotics through combined mode-of-action and synthesis-informed design studies.


Assuntos
Arginina/análogos & derivados , Arginina/farmacologia , Parede Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Vancomicina/análogos & derivados , Vancomicina/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Arginina/toxicidade , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/toxicidade , Vibrio cholerae/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...