Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714465

RESUMO

OBJECTIVE: Ultrasound speckle tracking enables in vivo measurement of soft tissue deformation or strain, providing a non-invasive diagnostic tool to quantify tissue health. However, adoption into new fields is challenging since algorithms need to be tuned with gold-standard reference data that are expensive or impractical to acquire. Here, we present a novel optimization approach that only requires repeated measurements, which can be acquired for new applications where reference data might not be readily available or difficult to get hold of. METHODS: Soft tissue motion was captured using ultrasound for the medial collateral ligament (MCL) of three quasi-statically loaded porcine stifle joints, and medial ligamentous structures of a dynamically loaded human cadaveric knee joint. Using a training subset, custom speckle tracking algorithms were created for the porcine and human ligaments using surrogate optimization, which aimed to maximize repeatability by minimizing the normalized standard deviation of calculated strain maps for repeat measurements. An unseen test subset was then used to validate the tuned algorithms by comparing the ultrasound strains to digital image correlation (DIC) surface strains (porcine specimens) and length change values of the optically tracked ligament attachments (human specimens). RESULTS: After 1500 iterations, the optimization routine based on the porcine and human training data converged to similar values of normalized standard deviations of repeat strain maps (porcine: 0.19, human: 0.26). Ultrasound strains calculated for the independent test sets using the tuned algorithms closely matched the DIC measurements for the porcine quasi-static measurements (R > 0.99, RMSE < 0.59%) and the length change between the tracked ligament attachments for the dynamic human dataset (RMSE < 6.28%). Furthermore, strains in the medial ligamentous structures of the human specimen during flexion showed a strong correlation with anterior/posterior position on the ligaments (R > 0.91). CONCLUSION: Adjusting ultrasound speckle tracking algorithms using an optimization routine based on repeatability led to robust and reliable results with low RMSE for the medial ligamentous structures of the knee. This tool may be equally beneficial in other soft-tissue displacement or strain measurement applications and can assist in the development of novel ultrasonic diagnostic tools to assess soft tissue biomechanics.

2.
Front Bioeng Biotechnol ; 12: 1360669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585711

RESUMO

Achieving osseointegration is a fundamental requirement for many orthopaedic, oral, and craniofacial implants. Osseointegration typically takes three to 6 months, during which time implants are at risk of loosening. The aim of this study was to investigate whether osseointegration could be actively enhanced by delivering controllable electromechanical stimuli to the periprosthetic bone. First, the osteoconductivity of the implant surface was confirmed using an in vitro culture with murine preosteoblasts. The effects of active treatment on osseointegration were then investigated in a 21-day ex vivo model with freshly harvested cancellous bone cylinders (n = 24; Ø10 mm × 5 mm) from distal porcine femora, with comparisons to specimens treated by a distant ultrasound source and static controls. Cell viability, proliferation and distribution was evident throughout culture. Superior ongrowth of tissue onto the titanium discs during culture was observed in the actively stimulated specimens, with evidence of ten-times increased mineralisation after 7 and 14 days of culture (p < 0.05) and 2.5 times increased expression of osteopontin (p < 0.005), an adhesive protein, at 21 days. Moreover, histological analyses revealed increased bone remodelling at the implant-bone interface in the actively stimulated specimens compared to the passive controls. Active osseointegration is an exciting new approach for accelerating bone growth into and around implants.

3.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475232

RESUMO

Aseptic loosening is the dominant failure mechanism in contemporary knee replacement surgery, but diagnostic techniques are poorly sensitive to the early stages of loosening and poorly specific in delineating aseptic cases from infections. Smart implants have been proposed as a solution, but incorporating components for sensing, powering, processing, and communication increases device cost, size, and risk; hence, minimising onboard instrumentation is desirable. In this study, two wireless, battery-free smart implants were developed that used passive biotelemetry to measure fixation at the implant-cement interface of the tibial components. The sensing system comprised of a piezoelectric transducer and coil, with the transducer affixed to the superior surface of the tibial trays of both partial (PKR) and total knee replacement (TKR) systems. Fixation was measured via pulse-echo responses elicited via a three-coil inductive link. The instrumented systems could detect loss of fixation when the implants were partially debonded (+7.1% PKA, +32.6% TKA, both p < 0.001) and fully debonded in situ (+6.3% PKA, +32.5% TKA, both p < 0.001). Measurements were robust to variations in positioning of the external reader, soft tissue, and the femoral component. With low cost and small form factor, the smart implant concept could be adopted for clinical use, particularly for generating an understanding of uncertain aseptic loosening mechanisms.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Humanos , Falha de Prótese , Reoperação/métodos , Tíbia/cirurgia , Articulação do Joelho/cirurgia , Desenho de Prótese
4.
Biomater Adv ; 154: 213590, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598437

RESUMO

Smart implantable electronic medical devices are being developed to deliver healthcare that is more connected, personalised, and precise. Many of these implantables rely on piezoceramics for sensing, communication, energy autonomy, and biological stimulation, but the piezoceramics with the strongest piezoelectric coefficients are almost exclusively lead-based. In this article, we evaluate the electromechanical and biological characteristics of a lead-free alternative, 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 (BNT-6BT), manufactured via two synthesis routes: the conventional solid-state method (PIC700) and tape casting (TC-BNT-6BT). The BNT-6BT materials exhibited soft piezoelectric properties, with d33 piezoelectric coefficients that were inferior to commonly used PZT (PIC700: 116 pC/N; TC-BNT-6BT: 121 pC/N; PZT-5A: 400 pC/N). The material may be viable as a lead-free substitute for soft PZT where moderate performance losses up to 10 dB are tolerable, such as pressure sensing and pulse-echo measurement. No short-term harmful biological effects of BNT-6BT were detected and the material was conducive to the proliferation of MC3T3-E1 murine preosteoblasts. BNT-6BT could therefore be a viable material for electroactive implants and implantable electronics without the need for hermetic sealing.


Assuntos
Comércio , Próteses e Implantes , Animais , Camundongos , Íons , Comunicação , Eletrônica
5.
Sensors (Basel) ; 21(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34450985

RESUMO

The characterisation and monitoring of viscous fluids have many important applications. This paper reports a refined 'dipstick' method for ultrasonic measurement of the properties of viscous fluids. The presented method is based on the comparison of measurements of the ultrasonic properties of a waveguide that is immersed in a viscous liquid with the properties when it is immersed in a reference liquid. We can simultaneously determine the temperature and viscosity of a fluid based on the changes in the velocity and attenuation of the elastic shear waves in the waveguide. Attenuation is mainly dependent on the viscosity of the fluid that the waveguide is immersed in and the speed of the wave mainly depends on the surrounding fluid temperature. However, there is a small interdependency since the mass of the entrained viscous liquid adds to the inertia of the system and slows down the wave. The presented measurements have unprecedented precision so that the change due to the added viscous fluid mass becomes important and we propose a method to model such a 'viscous effect' on the wave propagation velocity. Furthermore, an algorithm to correct the velocity measurements is presented. With the proposed correction algorithm, the experimental results for kinematic viscosity and temperature show excellent agreement with measurements from a highly precise in-lab viscometer and a commercial resistance temperature detector (RTD) respectively. The measurement repeatability of the presented method is better than 2.0% in viscosity and 0.5% in temperature in the range from 8 to 300 cSt viscosity and 40 to 90 °C temperature.

6.
IEEE Trans Biomed Circuits Syst ; 15(1): 102-110, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33471767

RESUMO

Implant failure can have devastating consequences on patient outcomes following joint replacement. Time to diagnosis affects subsequent treatment success, but current diagnostics do not give early warning and lack accuracy. This research proposes an embedded ultrasound system to monitor implant fixation and temperature - a potential indicator of infection. Requiring only two implanted components: a piezoelectric transducer and a coil, pulse-echo responses are elicited via a three-coil inductive link. This passive system avoids the need for batteries, energy harvesters, and microprocessors, resulting in minimal changes to existing implant architecture. Proof-of-concept was demonstrated in vitro for a titanium plate cemented into synthetic bone, using a small embedded coil with 10 mm diameter. Gross loosening - simulated by completely debonding the implant-cement interface - was detectable with 95% confidence at up to 12 mm implantation depth. Temperature was calibrated with root mean square error of 0.19°C at 5 mm, with measurements accurate to ±1°C with 95% confidence up to 6 mm implantation depth. These data demonstrate that with only a transducer and coil implanted, it is possible to measure fixation and temperature simultaneously. This simple smart implant approach minimises the need to modify well-established implant designs, and hence could enable mass-market adoption.


Assuntos
Ortopedia , Transdutores , Cimentos Ósseos , Humanos , Próteses e Implantes , Desenho de Prótese , Temperatura
7.
Artigo em Inglês | MEDLINE | ID: mdl-32746215

RESUMO

Inspection is a key part of the asset management process of industrial plants and there are numerous plate-like structures that require inspection. Ultrasonic guided waves have been extensively used to detect various types of defect by monitoring reflected and transmitted signals because they enable faster screening of large areas. However, ultrasonic guided wave testing becomes difficult for very shallow, sharp defects as current inspection techniques suffer from a lack of sensitivity to such features. Previous studies, obtained by comparing various inspection techniques, suggest that the SH1 mode in particular, at around 3 MHz · mm, would be suitable when testing for shallow defects; however, it is clear that both the SH0 and SH1 modes can exist at this frequency-thickness product. This can complicate the inspection process and, therefore, limit defect detectability. This article investigates the possibility of a single-mode excitation of the SH1 mode at around 3 MHz · mm. The ability of this method toward detecting very shallow defects (<10% cross-sectional thickness loss) has also been studied. By means of analytical predictions and finite element, it is shown that a signal dominated by the SH1 mode can be generated using a single permanent periodic magnet (PPM) electromagnetic acoustic transducer (EMAT) (PPM EMAT). All predictions are then backed up by experimental measurements. It is also shown that, by studying the reflection coefficient of the SH1 mode, the pure SH1 mode can be used to detect defects as shallow as 5% thickness loss from a 500-mm stand-off. These defects would otherwise be missed by standard, lower frequency guided wave testing.

8.
Proc Math Phys Eng Sci ; 475(2225): 20180831, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31236046

RESUMO

Pulse-echo arrays are used in radar, sonar, seismic, medical and non-destructive evaluation. There is a trend to produce arrays with an ever-increasing number of elements. This trend presents two major challenges: (i) often the size of the elements is reduced resulting in a lower signal-to-noise ratio (SNR) and (ii) the time required to record all of the signals that correspond to every transmit-receive path increases. Coded sequences with good autocorrelation properties can increase the SNR while orthogonal sets can be used to simultaneously acquire all of the signals that correspond to every transmit-receive path. However, a central problem of conventional coded sequences is that they cannot achieve good autocorrelation and orthogonality properties simultaneously due to their length being limited by the location of the closest reflectors. In this paper, a solution to this problem is presented by using coded sequences that have receive intervals. The proposed approach can be more than one order of magnitude faster than conventional methods. In addition, binary excitation and quantization can be employed, which reduces the data throughput by roughly an order of magnitude and allows for higher sampling rates. While this concept is generally applicable to any field, a 16-element system was built to experimentally demonstrate this principle for the first time using a conventional medical ultrasound probe.

9.
Artigo em Inglês | MEDLINE | ID: mdl-28166492

RESUMO

Pulse compression has been used for decades in radar, sonar, medical, and industrial ultrasound. It consists in transmitting a modulated or coded excitation, which is then cross-correlated with the received signal such that received echoes are time compressed, thereby increasing their intensity and hence the system resolution and signal-to-noise ratio (SNR). A central problem in pulse-echo systems is that while longer coded excitations yield higher SNRs, the length of the coded excitation or sequence is limited by the distance between the closest reflector and the transmitter/receiver. In this paper, a new approach to coded excitation is presented whereby receive intervals or pauses are introduced within the excitation itself; reception takes place in these intervals. As a result, the code length is no longer limited by the distance to the closest reflector and a higher SNR increase can be realized. Moreover, the excitation can be coded in such a way that continuous transmission becomes possible, which reduces the overall duration of the system response to changes in the medium. The optimal distribution of the receive intervals within the excitation is discussed, and an example of its application in industrial ultrasound is presented. The example consists of an electromagnetic-acoustic transducer driven with 4.5 V, where a clear signal can be obtained in quasi-real-time (e.g., ~9-Hz refresh rate), while commercially available systems require 1200 V for a similar performance.

10.
J Acoust Soc Am ; 136(6): 3028, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25480052

RESUMO

In corrosion assessment, ultrasonic wall-thickness measurements are often presented in the form of a color map. However, this gives little quantitative information on the distribution of the thickness measurements. The collected data can be used to form an empirical cumulative distribution function (ECDF), which provides information on the fraction of the surface with less than a certain thickness. It has been speculated that the ECDF could be used to draw conclusions about larger areas, from inspection data of smaller sub-sections. A detailed understanding of the errors introduced by such an approach is required to be confident in its predictions. There are two major sources of error: the actual thickness variation due to the morphology of the surface and the interaction of the signal processing algorithm with the recorded ultrasonic signals. Parallel experimental and computational studies were performed using three surfaces, generated with Gaussian height distributions. The surfaces were machined onto mild steel plates and ultrasonic C-scans were performed, while the distributed point source method was used to perform equivalent simulations. ECDFs corresponding to each of these surfaces (for both the experimental and computational data) are presented and their variation with changing surface roughness and different timing algorithms is discussed.

11.
J Acoust Soc Am ; 135(4): 1731-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25234973

RESUMO

The interaction of acoustically driven bubbles with a wall is important in many applications of ultrasound and cavitation, as the close boundary can severely alter the bubble dynamics. In this paper, the non-spherical surface oscillations of bubbles near a surface in a weak acoustic standing wave field are investigated experimentally and numerically. The translation, the volume, and surface mode oscillations of bubbles near a flat glass surface were observed by a high speed camera in a standing wave cell at 46.8 kHz. The model approach is based on a modified Keller-Miksis equation coupled to surface mode amplitude equations in the first order, and to the translation equations. Modifications are introduced due to the adjacent wall. It was found that a bubble's oscillation mode can change in the presence of the wall, as compared to the bubble in the bulk liquid. In particular, the wall shifts the instability pressure thresholds to smaller driving frequencies for fixed bubble equilibrium radii, or to smaller equilibrium radii for fixed excitation frequency. This can destabilize otherwise spherical bubbles, or stabilize bubbles undergoing surface oscillations in the bulk. The bubble dynamics observed in experiment demonstrated the same trend as the theoretical results.

12.
Artigo em Inglês | MEDLINE | ID: mdl-24960707

RESUMO

The challenge of accurately simulating how incident scalar waves interact with rough boundaries has made it an important area of research within many scientific disciplines. Conventional methods, which in the majority of cases focus only on scattering in two dimensions, often suffer from long simulation times or reduced accuracy, neglecting phenomena such as multiple scattering and surface self-shadowing. A simulation based on the scalar wave distributed point source method (DPSM) is presented as an alternative which is computationally more efficient than fully meshed numerical methods while obtaining greater accuracy than approximate analytical techniques. Comparison is made to simulated results obtained using the finite element method for a sinusoidally periodic surface where scattering only occurs in two dimensions, showing very good agreement (<0.2 dB). In addition to two-dimensional scattering, comparison to experimental results is also carried out for scattering in three dimensions when the surface has a Gaussian roughness distribution. Results indicate that for two-dimensional scattering and for rough surfaces with a correlation length equal to the incident wavelength (λ) and a root mean square height less than 0.2λ, the scalar wave approximation predicts reflected pulse shape change and envelope amplitudes generally to within 1 dB. Comparison between transducers within a three-element array also illustrate the sensitivity pulse amplitude can have to sensor position above a rough surface, differing by as much as 17 dB with a positional change of just 1.25λ.

13.
J Acoust Soc Am ; 132(1): 37-47, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22779453

RESUMO

The transport of bubbles to a neighboring surface is very important in surface chemistry, bioengineering, and ultrasonic cleaning, etc. This paper proposes a multi-bubble transport method by using an acoustic standing wave field and establishes a model that explains the multi-bubble translation by expressing the balance between Bjerknes forces and hydrodynamic forces on a bubble in a liquid medium. Results indicated that the influence of primary Bjerknes force, secondary Bjerknes force, and buoyancy force on the bubble translation depends on the position of the target bubble in the acoustic field. Moreover, it was found that increasing the size of a bubble or pressure amplitude can accelerate the bubble motion and enhance the bubble-bubble interaction. The secondary Bjerknes force between two bubbles can switch from an attractive one when they oscillate in phase to a repulsive one when the bubble oscillations are out of phase. These findings provide an insight into the multi-bubble translation near a surface and can be applied to future bubble motion control studies, especially in drug delivery, sonoporation, and ultrasonic cleaning.

14.
Ultrasonics ; 51(8): 1014-25, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21719064

RESUMO

The use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface. The interactions between bubbles and a surface have been studied experimentally and analytically. However, most of the investigations focused on violently oscillating bubbles (also known as cavitation bubble), less attention has been given to understand the interactions between moderately oscillating bubbles and a boundary. Moreover, cavitation bubbles were normally generated in situ by a high intensity laser beam, little experimental work has been carried out to study the translational trajectory of a moderately oscillating bubble in an acoustic field and subsequent interactions with the surface. This paper describes the design of an ultrasonic test cell and explores the mechanism of bubble manipulation within the test cell. The test cell consists of a transducer, a liquid medium and a glass backing plate. The acoustic field within the multi-layered stack was designed in such a way that it was effectively one dimensional. This was then successfully simulated by a one dimensional network model. The model can accurately predict the impedance of the test cell as well as the mode shape (distribution of particle velocity and stress/pressure field) within the whole assembly. The mode shape of the stack was designed so that bubbles can be pushed from their injection point onto a backing glass plate. Bubble radial oscillation was simulated by a modified Keller-Miksis equation and bubble translational motion was derived from an equation obtained by applying Newton's second law to a bubble in a liquid medium. Results indicated that the bubble trajectory depends on the acoustic pressure amplitude and initial bubble size: an increase of pressure amplitude or a decrease of bubble size forces bubbles larger than their resonant size to arrive at the target plate at lower heights, while the trajectories of smaller bubbles are less influenced by these factors. The test cell is also suitable for testing the effects of drag force on the bubble motion and for studying the bubble behavior near a surface.


Assuntos
Acústica , Gases/química , Microbolhas , Desenho de Equipamento , Movimento (Física) , Propriedades de Superfície , Transdutores
15.
Artigo em Inglês | MEDLINE | ID: mdl-21244983

RESUMO

Conventional ultrasonic transducers cannot withstand high temperatures for two main reasons: the piezoelectric elements within them depolarize, and differential thermal expansion of the different materials within a transducer causes them to fail. In this paper, the design of a high-temperature ultrasonic thickness gauge that bypasses these problems is described. The system uses a waveguide to isolate the vulnerable transducer and piezoelectric elements from the high-temperature measurement zone. Use of thin and long waveguides of rectangular cross section allows large temperature gradients to be sustained over short distances without the need for additional cooling equipment. The main problems that had to be addressed were the transmission and reception of ultrasonic waves into and from the testpiece that the waveguides are coupled to, and optimization of the wave propagation along the waveguide itself. It was found that anti-plane shear loading performs best at transmitting and receiving from the surface of a component that is to be inspected. Therefore, a nondispersive guided wave mode in large-aspect-ratio rectangular strips was employed to transmit the anti-plane shear loading from the transducer to the measurement zone. Different joining methods to attach the waveguides to the component were investigated and experiments showed that clamping the waveguides to the component surface gave the best results. The thickness of different plate samples was consistently measured to within less than 0.1 mm. Performance at high temperatures was tested in a furnace at 730°C for 4 weeks without signal degradation. Thicknesses in the range of 3 to 25 mm could be monitored using Hanning windowed tonebursts with 2 MHz center frequency.

16.
Artigo em Inglês | MEDLINE | ID: mdl-23443693

RESUMO

Guided wave inspection has proven to be a very effective method for the rapid inspection of large structures. The fundamental shear horizontal (SH) wave mode in plates and the torsional mode in pipe-like structures are especially useful because of their non-dispersive character. Guided waves can be generated by either piezoelectric transducers or electro- magnetic acoustic transducers (EMATs), and EMATs can be based on either the Lorentz force or magnetostriction. Several EMAT configurations can be used to produce SH waves, the most common being Lorentz-force periodic permanent magnet and magnetostrictive EMATs, the latter being directly applied on the sample or with a bonded strip of highly magnetostrictive material on the plate. This paper compares the performance of these solutions on steel structures. To quantitatively assess the wave amplitude produced by different probes, a finite element model of the elementary transducers has been developed. The results of the model are experimentally validated and the simulations are further used to study the dependence of ultrasonic wave amplitude on key design parameters. The analysis shows that magnetostrictive EMATs directly applied on mild steel plates have comparatively poor performance that is dependent on the precise magneto-mechanical properties of the test object. Periodic permanent magnet EMATs generate intermediate wave amplitudes and are noncontact and insensitive to the variations in properties seen across typical steels. Large signal amplitudes can be achieved with magnetostrictive EMATs with a layer of highly magnetostrictive material attached between the transducer and the plate, but this compromises the noncontact nature of the transducer.


Assuntos
Teste de Materiais/métodos , Modelos Químicos , Espalhamento de Radiação , Som , Aço/análise , Aço/química , Simulação por Computador
17.
Artigo em Inglês | MEDLINE | ID: mdl-21156376

RESUMO

The noncontact nature of electromagnetic acoustic transducers (EMATs) offers a series of advantages over traditional piezoelectric transducers, but these features are counter-balanced by their relatively low signal-to-noise ratio and their strong dependence on material properties such as electric conductivity, magnetic permeability, and magnetostriction. The implication is that full exploitation of EMATs needs detailed modeling of their operation. A finite element model, accounting for the main transduction mechanisms, has been developed to allow the optimization of the transducers. Magnetostriction is included and described through an analogy with piezoelectricity. The model is used to predict the performance of a simple EMAT: a single current-carrying wire, parallel to a bias magnetic field generating shear horizontal waves in a nickel plate close to it. The results are validated against experiments. The model is able to successfully predict the wave amplitude dependence on significant parameters: the static bias field, the driving current amplitude, and the excitation frequency. The comparison does not employ any arbitrary adjustable parameter; for the first time an absolute validation of a magnetostrictive EMAT model has been achieved. The results are satisfactory: the discrepancy between the numerical predictions and the measured values of wave amplitude per unit current is less than 20% over a 200 kHz frequency range. The study has also shown that magnetostrictive EMAT sensitivity is not only a function of the magnetostrictive properties, because the magnetic permeability also plays a significant role in the transduction mechanism, partly counterbalancing the magnetostrictive effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...