Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pest Manag Sci ; 77(4): 2068-2077, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33342044

RESUMO

BACKGROUND: The Diaporthe/Phomopsis complex (D/P) is a group of soybean seed-borne fungi. The use of chemical fungicides, either for seed treatment or during the crop cycle, is the most adopted practice for treating fungal diseases caused by this complex. Worldwide, there is a search for alternative seed treatments that are less harmful to the environment than chemicals. Non-thermal plasma (NTP) is a novel seed treatment technology for pathogen removal. This research aimed to evaluate the effects of NTP on the in vitro performance of pure cultures of Diaporthe longicolla and elucidate the mechanisms underlying these effects. RESULTS: Active D. longicolla mycelium, growing in vitro, was exposed to different NTP treatments, employing a dielectric barrier discharge arrangement with different carrier gases (N2 or O2 ). Fungal growth, fresh biomass and colony appearance were negatively affected by plasma treatments (TN3 and TO3). Lipid peroxidation and antioxidant activities were higher in plasma-treated colonies comparison with non-exposed colonies (control). Fungal asexual spores (conidia) were also exposed to NTP, showing high susceptibility. CONCLUSION: Exposure of D. longicolla colonies to NTP severely compromised fungal biology. Ozone production during treatment and lipid peroxidation of fungal cell membranes appeared to be involved in the observed effects. © 2020 Society of Chemical Industry.


Assuntos
Ascomicetos , Sementes , Glycine max , Tecnologia
2.
Sci Rep ; 10(1): 4917, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188896

RESUMO

Soybean (Glycine max (L.) Merrill) is one of the most important crops worldwide providing dietary protein and vegetable oil. Most of the nitrogen required by the crop is supplied through biological N2 fixation. Non-thermal plasma is a fast, economical, and environmental-friendly technology that can improve seed quality, plant growth, and crop yield. Soybean seeds were exposed to a dielectric barrier discharge plasma operating at atmospheric pressure air with superimposed flows of O2 or N2 as carrying gases. An arrangement of a thin phenolic sheet covered by polyester films was employed as an insulating barrier. We focused on the ability of plasma to improve soybean nodulation and biological nitrogen fixation. The total number of nodules and their weight were significantly higher in plants grown from treated seeds than in control. Plasma treatments incremented 1.6 fold the nitrogenase activity in nodules, while leghaemoglobin content was increased two times, indicating that nodules were fixing nitrogen more actively than control. Accordingly, the nitrogen content in nodules and the aerial part of plants increased by 64% and 23%, respectively. Our results were supported by biometrical parameters. The results suggested that different mechanisms are involved in soybean nodulation improvement. Therefore, the root contents of isoflavonoids, glutathione, auxin and cytokinin, and expansin (GmEXP1) gene expression were determined. We consider this emerging technology is a suitable pre-sowing seed treatment.


Assuntos
Glycine max/fisiologia , Fixação de Nitrogênio , Nodulação , Gases em Plasma , Nódulos Radiculares de Plantas/fisiologia , Sementes , Nitrogênio/metabolismo , Fixação de Nitrogênio/efeitos dos fármacos , Fenótipo , Desenvolvimento Vegetal , Nodulação/efeitos dos fármacos , Gases em Plasma/farmacologia , Característica Quantitativa Herdável , Nódulos Radiculares de Plantas/efeitos dos fármacos , Sementes/efeitos dos fármacos , Glycine max/efeitos dos fármacos
4.
Materials (Basel) ; 12(16)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398836

RESUMO

A kinetic scheme for non-equilibrium regimes of atmospheric pressure air discharges is developed. A distinctive feature of this model is that it includes associative ionization with the participation of N(2D, 2P) atoms. The thermal dissociation of vibrationally excited nitrogen molecules and the electronic excitation from all the vibrational levels of the nitrogen molecules are also accounted for. The model is used to simulate the parameters of a glow discharge ignited in a fast longitudinal flow of preheated (T0 = 1800-2900 K) air. The results adequately describe the dependence of the electric field in the glow discharge on the initial gas temperature. For T0 = 1800 K, a substantial acceleration in the ionization kinetics of the discharge is found at current densities larger than 3 A/cm2, mainly due to the N(2P) + O(3P) → NO+ + e process; being the N(2P) atoms produced via quenching of N2(A3∑u+) molecules by N(4S) atoms. Correspondingly, the reduced electric field noticeably falls because the electron energy (6.2 eV) required for the excitation of the N2(A3∑u+) state is considerably lower than the ionization energy (9.27 eV) of the NO molecules. For higher values of T0, the associative ionization N(2D) + O(3P) → NO+ + e process (with a low-activation barrier of 0.38 eV) becomes also important in the production of charged particles. The N(2D) atoms being mainly produced via quenching of N2(A3∑u+) molecules by O(3P) atoms.

5.
Heliyon ; 5(4): e01495, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31011650

RESUMO

Soybean (Glycine max (L.) Merrill) is a globally important crop, providing oil and protein. Diaporthe/Phomopsis complex includes seed-borne pathogens that affect this legume. Non-thermal plasma treatment is a fast, cost-effective and environmental-friendly technology. Soybean seeds were exposed to a quasi-stationary (50 Hz) dielectric barrier discharge plasma operating at atmospheric pressure air. Different carrying gases (O2 and N2) and barrier insulating materials were used. This work was performed to test if the effects of non-thermal plasma treatment applied to healthy and infected seeds persist throughout the entire cycle of plants. To this aim, lipid peroxidation, activity of catalase, superoxide dismutase and guaiacol peroxidase, vegetative growth and agronomic traits were analysed. The results here reported showed that plants grown from infected seeds did not trigger oxidative stress due to the reduction of pathogen incidence in seeds treated with cold plasma. Vegetative growth revealed a similar pattern for plants grown from treated seeds than that found for the healthy control. Infected control, by contrast, showed clear signs of damage. Moreover, plasma treatment itself increased plant growth, promoted a normal and healthy physiological performance and incremented the yield of plants. The implementation of this technology for seeds treatment before sowing could help reducing the use of agrochemicals during the crop cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...