Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prostate ; 84(10): 909-921, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38619005

RESUMO

INTRODUCTION: Lysine-specific demethylase 1 (LSD1) is emerging as a critical mediator of tumor progression in metastatic castration-resistant prostate cancer (mCRPC). Neuroendocrine prostate cancer (NEPC) is increasingly recognized as an adaptive mechanism of resistance in mCRPC patients failing androgen receptor axis-targeted therapies. Safe and effective LSD1 inhibitors are necessary to determine antitumor response in prostate cancer models. For this reason, we characterize the LSD1 inhibitor bomedemstat to assess its clinical potential in NEPC as well as other mCRPC pathological subtypes. METHODS: Bomedemstat was characterized via crystallization, flavine adenine dinucleotide spectrophotometry, and enzyme kinetics. On-target effects were assessed in relevant prostate cancer cell models by measuring proliferation and H3K4 methylation using western blot analysis. In vivo, pharmacokinetic (PK) and pharmacodynamic (PD) profiles of bomedemstat are also described. RESULTS: Structural, biochemical, and PK/PD properties of bomedemstat, an irreversible, orally-bioavailable inhibitor of LSD1 are reported. Our data demonstrate bomedemstat has >2500-fold greater specificity for LSD1 over monoamine oxidase (MAO)-A and -B. Bomedemstat also demonstrates activity against several models of advanced CRPC, including NEPC patient-derived xenografts. Significant intra-tumoral accumulation of orally-administered bomedemstat is measured with micromolar levels achieved in vivo (1.2 ± 0.45 µM at the 7.5 mg/kg dose and 3.76 ± 0.43 µM at the 15 mg/kg dose). Daily oral dosing of bomedemstat at 40 mg/kg/day is well-tolerated, with on-target thrombocytopenia observed that is rapidly reversible following treatment cessation. CONCLUSIONS: Bomedemstat provides enhanced specificity against LSD1, as revealed by structural and biochemical data. PK/PD data display an overall safety profile with manageable side effects resulting from LSD1 inhibition using bomedemstat in preclinical models. Altogether, our results support clinical testing of bomedemstat in the setting of mCRPC.


Assuntos
Histona Desmetilases , Neoplasias de Próstata Resistentes à Castração , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Masculino , Humanos , Animais , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/farmacocinética , Benzamidas , Piperazinas , Triazóis
2.
Wellcome Open Res ; 8: 146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520936

RESUMO

Background: Schistosoma mansoni, a parasitic worm species responsible for the neglected tropical disease schistosomiasis, undergoes strict developmental regulation of gene expression that is carefully controlled by both genetic and epigenetic processes. As inhibition of S. mansoni epigenetic machinery components impairs key transitions throughout the parasite's digenetic lifecycle, a greater understanding of how epi-drugs affect molecular processes in schistosomes could lead to the development of new anthelmintics. Methods:   In vitro whole organism assays were used to assess the anti-schistosomal activity of 39 Homo sapiens Lysine Specific Demethylase 1 (HsLSD1) inhibitors on different parasite life cycle stages. Moreover, tissue-specific stains and genomic analysis shed light on the effect of these small molecules on the parasite biology. Results: Amongst this collection of small molecules, compound 33 was the most potent in reducing ex vivo viabilities of schistosomula, juveniles, miracidia and adults. At its sub-lethal concentration to adults (3.13 µM), compound 33 also significantly impacted oviposition, ovarian as well as vitellarian architecture and gonadal/neoblast stem cell proliferation. ATAC-seq analysis of adults demonstrated that compound 33 significantly affected chromatin structure (intragenic regions > intergenic regions), especially in genes differentially expressed in cell populations (e.g., germinal stem cells, hes2 + stem cell progeny, S1 cells and late female germinal cells) associated with these ex vivo phenotypes. KEGG analyses further highlighted that chromatin structure of genes associated with sugar metabolism as well as TGF-beta and Wnt signalling were also significantly perturbed by compound 33 treatment. Conclusions: This work confirms the importance of histone methylation in S. mansoni lifecycle transitions, suggesting that evaluation of LSD1 - targeting epi-drugs may facilitate the search for next-generation anti-schistosomal drugs. The ability of compound 33 to modulate chromatin structure as well as inhibit parasite survival, oviposition and stem cell proliferation warrants further investigations of this compound and its epigenetic target SmLSD1.

3.
ACS Med Chem Lett ; 2(9): 708-13, 2011 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-24900364

RESUMO

Inhibition of dihydroorotate dehydrogenase (DHODH) for P. falciparum potentially represents a new treatment option for malaria, since DHODH catalyzes the rate-limiting step in the pyrimidine biosynthetic pathway and P. falciparum is unable to salvage pyrimidines and must rely on de novo biosynthesis for survival. We report herein the synthesis and structure-activity relationship of a series of 5-(2-methylbenzimidazol-1-yl)-N-alkylthiophene-2-carboxamides that are potent inhibitors against PfDHODH but do not inhibit the human enzyme. On the basis of efficacy observed in three mouse models of malaria, acceptable safety pharmacology risk assessment and safety toxicology profile in rodents, lack of potential drug-drug interactions, acceptable ADME/pharmacokinetic profile, and projected human dose, 5-(4-cyano-2-methyl-1H-benzo[d]imidazol-1-yl)-N-cyclopropylthiophene-2-carboxamide 2q was identified as a potential drug development candidate.

4.
Bioorg Med Chem Lett ; 20(1): 228-31, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19914064

RESUMO

Two sets of diaminopyrimidines, totalling 45 compounds, were synthesized and assayed against Plasmodium falciparum. The SAR was relatively shallow, with only the presence of a 2-(pyrrolidin-1-yl)ethyl group at R(2) significantly affecting activity. A subsequent series addressed high LogD values by introducing more polar side groups, with the most active compounds possessing diazepine and N-benzyl-4-aminopiperidyl groups at R(1)/R(2). A final series attempted to address high in vitro microsomal clearance by replacing the C6-Me group with CF(3), however antiplasmodial activity decreased without any improvement in clearance. The C6-CF(3) group decreased hERG inhibition, probably as a result of decreased amine basicity at C2/C4.


Assuntos
Antimaláricos/síntese química , Pirimidinas/química , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Pirimidinas/síntese química , Pirimidinas/farmacologia , Ratos , Relação Estrutura-Atividade
6.
Antimicrob Agents Chemother ; 53(5): 2052-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19289530

RESUMO

Trypanosomiasis remains a significant disease across the sub-Saharan African continent, with 50,000 to 70,000 individuals infected. The utility of current therapies is limited by issues of toxicity and the need to administer compounds intravenously. We have begun a program to pursue lead optimization around MDL 73811, an irreversible inhibitor of S-adenosylmethionine decarboxylase (AdoMetDC). This compound is potent but in previous studies cleared rapidly from the blood of rats (T. L. Byers, T. L. Bush, P. P. McCann, and A. J. Bitonti, Biochem. J. 274:527-533). One of the analogs synthesized (Genz-644131) was shown to be highly active against Trypanosoma brucei rhodesiense in vitro (50% inhibitory concentration, 400 pg/ml). Enzyme kinetic studies showed Genz-644131 to be approximately fivefold more potent than MDL 73811 against the T. brucei brucei AdoMetDC-prozyme complex. This compound was stable in vitro in rat and human liver microsomal and hepatocyte assays, was stable in rat whole-blood assays, did not significantly inhibit human cytochrome P450 enzymes, had no measurable efflux in CaCo-2 cells, and was only 41% bound by serum proteins. Pharmacokinetic studies of mice following intraperitoneal dosing showed that the half-life of Genz-644131 was threefold greater than that of MDL 73811 (7.4 h versus 2.5 h). Furthermore, brain penetration of Genz-644131 was 4.3-fold higher than that of MDL 73811. Finally, in vivo efficacy studies of T. b. brucei strain STIB 795-infected mice showed that Genz-644131 significantly extended survival (from 6.75 days for controls to >30 days for treated animals) and cured animals infected with T. b. brucei strain LAB 110 EATRO. Taken together, the data strengthen validation of AdoMetDC as an important parasite target, and these studies have shown that analogs of MDL 73811 can be synthesized with improved potency and brain penetration.


Assuntos
Adenosilmetionina Descarboxilase/antagonistas & inibidores , Desoxiadenosinas/química , Tripanossomicidas/química , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico , Animais , Encéfalo/metabolismo , Células CACO-2 , Desoxiadenosinas/síntese química , Desoxiadenosinas/farmacocinética , Desoxiadenosinas/farmacologia , Humanos , Cinética , Camundongos , Testes de Sensibilidade Parasitária , Ratos , Resultado do Tratamento , Tripanossomicidas/síntese química , Tripanossomicidas/farmacocinética , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/patogenicidade , Trypanosoma brucei rhodesiense/patogenicidade , Tripanossomíase Africana/mortalidade , Tripanossomíase Africana/parasitologia
7.
J Biol Chem ; 283(50): 35078-85, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18842591

RESUMO

Plasmodium falciparum causes the most deadly form of malaria and accounts for over one million deaths annually. The malaria parasite is unable to salvage pyrimidines and relies on de novo biosynthesis for survival. Dihydroorotate dehydrogenase (DHOD), a mitochondrially localized flavoenzyme, catalyzes the rate-limiting step of this pathway and is therefore an attractive antimalarial chemotherapeutic target. Using a target-based high throughput screen, we have identified a series of potent, species-specific inhibitors of P. falciparum DHOD (pfDHOD) that are also efficacious against three cultured strains (3D7, HB3, and Dd2) of P. falciparum. The primary antimalarial mechanism of action of these compounds was confirmed to be inhibition of pfDHOD through a secondary assay with transgenic malaria parasites, and the structural basis for enzyme inhibition was explored through in silico structure-based docking and site-directed mutagenesis. Compound-mediated cytotoxicity was not observed with human dermal fibroblasts or renal epithelial cells. These data validate pfDHOD as an antimalarial drug target and provide chemical scaffolds with which to begin medicinal chemistry efforts.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Plasmodium falciparum/enzimologia , Animais , Antimaláricos/farmacologia , Química Farmacêutica/métodos , Di-Hidro-Orotato Desidrogenase , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/metabolismo , Fibroblastos/metabolismo , Humanos , Concentração Inibidora 50 , Malária/tratamento farmacológico , Modelos Químicos , Mutagênese Sítio-Dirigida
8.
J Med Chem ; 49(26): 7781-91, 2006 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17181160

RESUMO

Human coagulation factor XIa (FXIa), a serine protease activated by site-specific cleavage of factor XI by thrombin, FXIIa, or autoactivation, is a critical enzyme in the amplification phase of the coagulation cascade. To investigate the potential of FXIa inhibitors as safe anticoagulants, a series of potent, selective peptidomimetic inhibitors of FXIa were designed and synthesized. Some of these inhibitors showed low nanomolar FXIa inhibitory activity with >1000-fold FXa selectivity and >100-fold thrombin selectivity. The X-ray structure of one of these inhibitors, 36, demonstrates its unique binding interactions with FXIa. Compound 32 caused a doubling of the activated partial thromboplastin time in human plasma at 2.4 microM and was efficacious in a rat model of venous thrombosis. These data suggest that factor XIa plays a significant role in venous thrombosis and may be a suitable target for the development of antithrombotic therapy.


Assuntos
Anticoagulantes/farmacologia , Desenho de Fármacos , Fator XIa/antagonistas & inibidores , Inibidores do Fator Xa , Fragmentos de Peptídeos/síntese química , Inibidores de Serina Proteinase/farmacologia , Animais , Anticoagulantes/síntese química , Anticoagulantes/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Masculino , Estrutura Molecular , Tempo de Tromboplastina Parcial , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Conformação Proteica , Ratos , Ratos Sprague-Dawley , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade , Trombina/antagonistas & inibidores , Trombose Venosa/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...