Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biomed Phys Eng Express ; 9(4)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071976

RESUMO

This work aims to investigate the accuracy of quantitative SPECT imaging of177Lu in the presence of90Y, which occurs in dual-isotope radiopharmaceutical therapy (RPT) involving both isotopes. We used the GATE Monte Carlo simulation toolkit to conduct a phantom study, simulating spheres filled with177Lu and90Y placed in a cylindrical water phantom that was also filled with activity of both radionuclides. We simulated multiple phantom configurations and activity combinations by varying the location of the spheres, the concentrations of177Lu and90Y in the spheres, and the amount of background activity. We investigated two different scatter window widths to be used with triple energy window (TEW) scatter correction. We also created multiple realizations of each configuration to improve our assessment, leading to a total of 540 simulations. Each configuration was imaged using a simulated Siemens SPECT camera. The projections were reconstructed using the standard 3D OSEM algorithm, and errors associated with177Lu activity quantification and contrast-to-noise ratios (CNRs) were determined. In all configurations, the quantification error was within ± 6% of the no-90Y case, and we found that quantitative accuracy may slightly improve when90Y is present because of reduction of errors associated with TEW scatter correction. The CNRs were not significantly impacted by the presence of90Y, but they were increased when a wider scatter window width was used for TEW scatter correction. The width of the scatter windows made a small but statistically significant difference of 1%-2% on the recovered177Lu activity. Based on these results, we can conclude that activity quantification of177Lu and lesion detectability is not degraded by the presence of90Y.


Assuntos
Radioisótopos , Tomografia Computadorizada de Emissão de Fóton Único , Espalhamento de Radiação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Simulação por Computador , Compostos Radiofarmacêuticos
2.
Pharmaceutics ; 15(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36986628

RESUMO

Cardiac blood pool imaging is currently performed almost exclusively with 99mTc-based compounds and SPECT/CT imaging. Using a generator-based PET radioisotope has a few advantages, including not needing nuclear reactors to produce it, obtaining better resolution in humans, and potentially reducing the radiation dose to the patient. When the shortlived radioisotope 68Ga is used, it can be applied repeatedly on the same day-for example, for the detection of bleeding. Our objective was to prepare and evaluate a long-circulating polymer functionalized with gallium for its biodistribution, toxicity, and dosimetric properties. A 500 kDa hyperbranched polyglycerol was conjugated to the chelator NOTA and radiolabeled rapidly at room temperature with 68Ga. It was then injected intravenously into a rat, and gated imaging allowed us to easily observe wall motion and cardiac contractility, confirming the suitability of this radiopharmaceutical for cardiac blood pool imaging. Internal radiation dose calculations showed that the radiation doses that patients would receive from the PET agent would be 2.5× lower than those from the 99mTc agent. A complete 14-day toxicology study in rats concluded that there were no gross pathology findings, changes in body or organ weights, or histopathological events. This radioactive-metal-functionalized polymer might be a suitable non-toxic agent to advance for clinical application.

3.
Theranostics ; 12(1): 232-259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34987643

RESUMO

Theranostics is an emerging paradigm that combines imaging and therapy in order to personalize patient treatment. In nuclear medicine, this is achieved by using radiopharmaceuticals that target identical molecular targets for both imaging (using emitted gamma rays) and radiopharmaceutical therapy (using emitted beta, alpha or Auger-electron particles) for the treatment of various diseases, such as cancer. If the therapeutic radiopharmaceutical cannot be imaged quantitatively, a "theranostic pair" imaging surrogate can be used to predict the absorbed radiation doses from the therapeutic radiopharmaceutical. However, theranostic dosimetry assumes that the pharmacokinetics and biodistributions of both radiopharmaceuticals in the pair are identical or very similar, an assumption that still requires further validation for many theranostic pairs. In this review, we consider both same-element and different-element theranostic pairs and attempt to determine if factors exist which may cause inaccurate dose extrapolations in theranostic dosimetry, either intrinsic (e.g. chemical differences) or extrinsic (e.g. injecting different amounts of each radiopharmaceutical) to the radiopharmaceuticals. We discuss the basis behind theranostic dosimetry and present common theranostic pairs and their therapeutic applications in oncology. We investigate general factors that could create alterations in the behavior of the radiopharmaceuticals or the quantitative accuracy of imaging them. Finally, we attempt to determine if there is evidence showing some specific pairs as suitable for theranostic dosimetry. We show that there are a variety of intrinsic and extrinsic factors which can significantly alter the behavior among pairs of radiopharmaceuticals, even if they belong to the same chemical element. More research is needed to determine the impact of these factors on theranostic dosimetry estimates and on patient outcomes, and how to correctly account for them.


Assuntos
Neoplasias/terapia , Medicina Nuclear/métodos , Cintilografia/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Nanomedicina Teranóstica/métodos , Animais , Humanos
5.
EJNMMI Phys ; 8(1): 26, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33709253

RESUMO

BACKGROUND: Patients with metastatic, castration-resistant prostate cancer (mCRPC) present with an increased tumor burden in the skeleton. For these patients, Lutetium-177 (Lu-177) radioligand therapy targeting the prostate-specific membrane antigen (PSMA) has gained increasing interest with promising outcome data. Patient-individualized dosimetry enables improvement of therapy success with the aim of minimizing absorbed dose to organs at risk while maximizing absorbed dose to tumors. Different dosimetric approaches with varying complexity and accuracy exist for this purpose. The Medical Internal Radiation Dose (MIRD) formalism applied to tumors assumes a homogeneous activity distribution in a sphere with unit density for derivation of tumor S values (TSV). Voxel S value (VSV) approaches can account for heterogeneous activities but are simulated for a specific tissue. Full patient-individual Monte Carlo (MC) absorbed dose simulation addresses both, heterogeneous activity and density distributions. Subsequent CT-based density weighting has the potential to overcome the assumption of homogeneous density in the MIRD formalism with TSV and VSV methods, which could be a major limitation for the application in bone metastases with heterogeneous density. The aim of this investigation is a comparison of these methods for bone lesion dosimetry in mCRPC patients receiving Lu-177-PSMA therapy. RESULTS: In total, 289 bone lesions in 15 mCRPC patients were analyzed. Percentage difference (PD) of average absorbed dose per lesion compared to MC, averaged over all lesions, was + 14 ± 10% (min: - 21%; max: + 56%) for TSVs. With lesion-individual density weighting using Hounsfield Unit (HU)-to-density conversion on the patient's CT image, PD was reduced to - 8 ± 1% (min: - 10%; max: - 3%). PD on a voxel level for three-dimensional (3D) voxel-wise dosimetry methods, averaged per lesion, revealed large PDs of + 18 ± 11% (min: - 27%; max: + 58%) for a soft tissue VSV approach compared to MC; after voxel-wise density correction, this was reduced to - 5 ± 1% (min: - 12%; max: - 2%). CONCLUSION: Patient-individual MC absorbed dose simulation is capable to account for heterogeneous densities in bone lesions. Since the computational effort prevents its routine clinical application, TSV or VSV dosimetry approaches are used. This study showed the necessity of lesion-individual density weighting for TSV or VSV in Lu-177-PSMA therapy bone lesion dosimetry.

6.
J Nucl Med ; 62(7): 1006-1011, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127625

RESUMO

Because of challenges in performing routine personalized dosimetry in radiopharmaceutical therapies, interest in single-time-point (STP) dosimetry, particularly using only a single SPECT scan, is on the rise. Meanwhile, there are questions about the reliability of STP dosimetry, with limited independent validations. In the present work, we analyzed 2 STP dosimetry methods and evaluated dose errors for several radiopharmaceuticals based on effective half-life distributions. Methods: We first challenged the common assumption that radiopharmaceutical effective half-lives across the population are gaussian-distributed (i.e., follow a normal distribution). Then, dose accuracy was estimated using 2 STP dosimetry methods for a wide range of potential post injection (p.i.) scan time points for different radiopharmaceuticals applied to neuroendocrine tumors and prostate cancer. The accuracy and limitations of each of the STP methods were discussed. Results: A lognormal distribution was more appropriate for capturing effective half-life distributions. The STP framework was promising for dosimetry of 177Lu-DOTATATE and for kidney dosimetry of different radiopharmaceuticals (errors < 30%). Meanwhile, for some radiopharmaceuticals, STP accuracy was compromised (e.g., in bone marrow and tumors for 177-labeled prostate-specific membrane antigen [PSMA])). The optimal SPECT scanning time for 177Lu-DOTATATE was approximately 72 h p.i., whereas 48 h p.i. was better for 177Lu-PSMA. Conclusion: Simplified STP dosimetry methods may compromise the accuracy of dose estimates, with some exceptions, such as for 177Lu-DOTATATE and for kidney dosimetry in different radiopharmaceuticals. Simplified personalized dosimetry in the clinic continues to be challenging. On the basis of our results, we make suggestions and recommendations for improved personalized dosimetry using simplified imaging schemes.


Assuntos
Compostos Radiofarmacêuticos , Estudos de Viabilidade , Humanos , Tomografia por Emissão de Pósitrons , Cintilografia
7.
Phys Med Biol ; 65(21): 215022, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33245057

RESUMO

PET images acquired after liver 90Y radioembolization therapies are typically very noisy, which significantly challenges both visualization and quantification of activity distributions. To improve their noise characteristics, regularized iterative reconstruction algorithms such as block sequential regularized expectation maximization (Q.Clear for GE Healthcare, USA) have been proposed. In this study, we aimed to investigate the effects which different reconstruction algorithms may have on patient images, with reconstruction parameters initially narrowed down using phantom studies. Moreover, we evaluated the impact of these reconstruction methods on voxel-based dose distribution in phantom and patient studies (lesions and healthy livers). The International Electrotechnical Commission (IEC)/NEMA phantom, containing six spheres, was filled with 90Y and imaged using a GE Discovery 690 PET/CT scanner with time-of-flight enabled. The images were reconstructed using Q.Clear (with ß parameter ranging from 0 to 8000) and ordered subsets expectation maximization. The image quality and quantification accuracy were evaluated by computing the hot ([Formula: see text]) and cold ([Formula: see text]) contrast recovery coefficients, background variability (BV) and activity bias. Next, dose distributions and dose volume histograms were generated using MIM® software's SurePlan LiverY90 toolbox. Subsequently, parameters optimized in these phantom studies were applied to five patient datasets. Dose parameters, such as Dmax, Dmean, D70, and V100Gy, were estimated, and their variability for different reconstruction methods was investigated. Based on phantom studies, the ß parameter values optimized for image quality and quantification accuracy were 2500 and 300, respectively. When all investigated reconstructions were applied to patient studies, Dmean, D50, D70, and V100Gy showed coefficients of variation below 8%; whereas the variability of Dmax was up to 30% for both phantom and patient images. Although ß = 300-1000 would provide accurate activity quantification for a region of interest, when considering activity/dose voxelized distribution, higher ß value (e.g. 4000-5000) would provide the greatest accuracy for dose distributions. In this 90Y radioembolization PET/CT study, the ß parameter in regularized iterative (Q.Clear) reconstruction was investigated for image quality, accurate quantification and dose distributions based on phantom experiments and then applied to patient studies. Our results indicate that more accurate dose distribution can be achieved from smoother PET images, reconstructed with larger ß values than those yielding the best activity quantifications but noisy images. Most importantly, these results suggest that quantitative measures, which are commonly used in clinics, such as SUVmax or SUVpeak( equivalent of Dmax), should not be employed for 90Y PET images, since their values would highly depend on the image reconstruction.


Assuntos
Embolização Terapêutica , Processamento de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Fígado/efeitos da radiação , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/instrumentação , Radioisótopos de Ítrio , Algoritmos , Humanos
8.
EJNMMI Phys ; 7(1): 10, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060777

RESUMO

BACKGROUND: Personalization of 177Lu-based radionuclide therapy requires implementation of dosimetry methods that are both accurate and practical enough for routine clinical use. Quantitative single-photon emission computed tomography/computed tomography (QSPECT/CT) is the preferred scanning modality to achieve this and necessitates characterizing the response of the camera, and calibrating it, over the full range of therapeutic activities and system capacity. Various methods to determine the camera calibration factor (CF) and the deadtime constant (τ) were investigated, with the aim to design a simple and robust protocol for quantitative 177Lu imaging. METHODS: The SPECT/CT camera was equipped with a medium energy collimator. Multiple phantoms were used to reproduce various attenuation conditions: rod sources in air or water-equivalent media, as well as a Jaszczak phantom with inserts. Planar and tomographic images of a wide range of activities were acquired, with multiple energy windows for scatter correction (double or triple energy window technique) as well as count rate monitoring over a large spectrum of energy. Dead time was modelled using the paralysable model. CF and τ were deduced by curve fitting either separately in two steps (CF determined first using a subset of low-activity acquisitions, then τ determined using the full range of activity) or at once (both CF and τ determined using the full range of activity). Total or segmented activity in the SPECT field of view was computed. Finally, these methods were compared in terms of accuracy to recover the known activity, in particular when planar-derived parameters were applied to the SPECT data. RESULTS: The SPECT camera was shown to operate as expected on a finite count rate range (up to ~ 350 kcps over the entire energy spectrum). CF and τ from planar (sources in air) and SPECT segmented Jaszczak data yielded a very good agreement (CF < 1% and τ < 3%). Determining CF and τ from a single curve fit made dead-time-corrected images less prone to overestimating recovered activity. Using triple-energy window scatter correction while acquiring one or more additional energy window(s) to enable wide-spectrum count rate monitoring (i.e. ranging 55-250 or 18-680 keV) yielded the most consistent results across the various geometries. The final, planar-derived calibration parameters for our system were a CF of 9.36 ± 0.01 cps/MBq and a τ of 0.550 ± 0.003 µs. Using the latter, the activity in a Jaszczak phantom could be quantified by QSPECT with an accuracy of 0.02 ± 1.10%. CONCLUSIONS: Serial planar acquisitions of sources in air using an activity range covering the full operational capacity of the SPECT/CT system, with multiple energy windows for wide-spectrum count rate monitoring, and followed by simultaneous determination of CF and τ using a single equation derived from the paralysable model, constitutes a practical method to enable accurate dead-time-corrected QSPECT imaging in a post-177Lu radionuclide therapy setting.

9.
Phys Med Biol ; 64(17): 175004, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31456584

RESUMO

Peptide receptor radionuclide therapy (PRRT) with 177Lu- radiolabeled octreotate is an effective treatment method for inoperable neuroendocrine tumours (NETs). There is growing evidence that estimates of the organ-at-risks (OARs) doses are necessary for the optimization of personalized PRRT (P-PRRT). Dosimetry, however, requires a complicated and time-consuming procedure, which hinders its implementation in the clinic. The aim of this study is to develop a practical and automatic technique to simplify personalized dosimetry of kidney, the major OAR in 177Lu P-PRRT. The data from 30 NETs patients undergoing 44 personalized 177Lu-DOTA-TATE therapy cycles were analyzed. To determine the biokinetics of the radiopharmaceutical in the kidneys, for each patient three SPECT/CT scans were acquired, at about 4 h, 24 h and 70 h after injection. The kidneys doses were evaluated using three different approaches: (1) a traditional approach based on whole kidney (WK) segmentation; (2) a small volume (SV) manual approach (M-SV) with observer-defined SV location; and (3) a software based SV-approach that automatically defines SV location (A-SV). Four different methods of automatic SV location selections were investigated. The SV kidney doses estimated using M-SV and A-SV approaches was evaluated and the accuracy of these two approaches were compared to the WK dosimetry. The kidney bio-kinetics, in terms of effective half-lives, obtained from both of the A-SV and M-SV approaches agreed to within 10% with those obtained from the WK segmentation. The average ratios of SV doses to WK doses were mostly about 1.8 ± 0.2 for both A-SV and M-SV approaches. The linear correlation coefficients between SV doses (both A-SV and M-SV) and WK doses were up to 0.9 with p  < 0.001. The differences between A-SV and M-SV were minor. By comparing different methods of SV location selections, independently selecting SV in images from each of the acquisitions was proved the most appropriate and accurate approach. An automatic, observer-independent method for selecting the location of the small volume in kidneys was developed. The accuracy of this dose estimation approach has been demonstrated by comparing it with the manual SV dosimetry, as well as the WK dosimetry. The proposed automatic approach can potentially be considered as a practical and simple method for dose estimation in the future clinical studies.


Assuntos
Complexos de Coordenação/uso terapêutico , Neoplasias Renais/radioterapia , Tumores Neuroendócrinos/radioterapia , Octreotida/análogos & derivados , Modelagem Computacional Específica para o Paciente , Compostos Radiofarmacêuticos/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Adulto , Humanos , Neoplasias Renais/diagnóstico por imagem , Tumores Neuroendócrinos/diagnóstico por imagem , Octreotida/uso terapêutico , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Software
10.
Phys Med Biol ; 64(17): 175006, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31287093

RESUMO

177Lu-DOTATATE therapy has been shown to produce encouraging results in treatment of neuroendocrine tumours (NETs). Unfortunately, since dosimetry for radionuclide therapy is considered to be challenging, typically similar amount of radiopharmaceutical is administered to every patient. There is growing evidence that the efficacy of this therapy can be significantly improved by employing personalized protocols, based on the organ-at-risk dosimetry. The aim of this study is to propose a practical and accurate dosimetry protocol based on the simplified acquisition schedules. Data from fifty-three therapy cycles in thirty-nine NET patients were analyzed. Three SPECT/CT scans, acquired at 4 h (D0), 23 h (D1) and 70 h (D3) after injection, were performed. The kidney volume was determined using CT and the activity was determined from quantitative SPECT using an iterative thresholding method. For each dataset, four methods were used to model the time-activity-curves (TAC): M1-two trapezoid segments (0 to D0 and D0 to D1), followed by monoexponential fit to D1 + D3 data; M2-monoexponential fit to D0 + D1 + D3 data; M3 and M4-monoexponential fit to D0 + D3 and D1 + D3 data, respectively. Additionally, kidney doses obtained from single time point method using a monoexponential curve with the population mean effective half-life, normalized to activities at D0 or D1 or D3 points, were calculated. The accuracy of simplified dosimetry methods was assessed as the percentage difference relative to doses calculated from M1. The major contribution to the absorbed dose estimate comes from the area under the late time portion of the TAC (D1 to infinity). Therefore, information from the late scan (D3) is crucial for the determination of kidney absorbed doses. Single time point method using monoexponential TAC, with the population mean effective half-life normalized to the late data point (48-72 h for kidneys) produces <10% deviation in the absorbed dose estimation, thus is recommended for clinical use.


Assuntos
Neoplasias Renais/radioterapia , Tumores Neuroendócrinos/radioterapia , Compostos Radiofarmacêuticos/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Feminino , Humanos , Neoplasias Renais/diagnóstico por imagem , Masculino , Tumores Neuroendócrinos/diagnóstico por imagem , Octreotida/análogos & derivados , Octreotida/uso terapêutico , Compostos Organometálicos/uso terapêutico , Radiometria/métodos , Radiometria/normas , Planejamento da Radioterapia Assistida por Computador/normas
11.
EJNMMI Phys ; 5(1): 30, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30523435

RESUMO

BACKGROUND: Rhenium-188-labelled-Lipiodol radioembolization is a safe and cost-effective treatment for primary liver cancer. In order to determine correlations between treatment doses and patient response to therapy, accurate patient-specific dosimetry is required. Up to date, the reported dosimetry of 188Re-Lipiodol has been based on whole-body (WB) planar imaging only, which has limited quantitative accuracy. The aim of the present study is to determine the in vivo pharmacokinetics, bio-distribution, and organ-level dosimetry of 188Re-AHDD-Lipiodol radioembolization using a combination of post-treatment planar and quantitative SPECT/CT images. Furthermore, based on the analysis of the pharmacokinetic data, a practical and relatively simple imaging and dosimetry method that could be implemented in clinics for 188Re-AHDD-Lipiodol radioembolization is proposed. Thirteen patients with histologically proven hepatocellular carcinoma underwent 188Re-AHDD-Lipiodol radioembolization. A series of 2-3 WB planar images and one SPECT/CT scan were acquired over 48 h after the treatment. The time-integrated activity coefficients (TIACs, also known as residence-times) and absorbed doses of tumors and organs at risk (OARs) were determined using a hybrid WB/SPECT imaging method. RESULTS: Whole-body imaging showed that 188Re-AHDD-Lipiodol accumulated mostly in the tumor and liver tissue but a non-negligible amount of the pharmaceutical was also observed in the stomach, lungs, salivary glands, spleen, kidneys, and urinary bladder. On average, the measured effective half-life of 188Re-AHDD-Lipiodol was 12.5 ± 1.9 h in tumor. The effective half-life in the liver and lungs (the two organs at risk) was 12.6 ± 1.7 h and 12.0 ± 1.9 h, respectively. The presence of 188Re in other organs was probably due to the chemical separation and subsequent release of the free radionuclide from Lipiodol. The average doses per injected activity in the tumor, liver, and lungs were 23.5 ± 40.8 mGy/MBq, 2.12 ± 1.78 mGy/MBq, and 0.11 ± 0.05 mGy/MBq, respectively. The proposed imaging and dosimetry method, consisting of a single SPECT/CT for activity determination followed by 188Re-AHDD-Lipiodol clearance with the liver effective half-life of 12.6 h, resulted in TIACs estimates (and hence, doses) mostly within ± 20% from the reference TIACs (estimated using three WB images and one SPECT/CT). CONCLUSIONS: The large inter-patient variability of the absorbed doses in tumors and normal tissue in 188Re-HDD-Lipiodol radioembolization patients emphasizes the importance of patient-specific dosimetry calculations based on quantitative post-treatment SPECT/CT imaging.

12.
Phys Med Biol ; 63(23): 235029, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30520418

RESUMO

Dual-isotope (DI) studies offer a number of advantages in pre-clinical imaging. These include: reducing study times when compared with sequential scans, reducing the number of animals required for any given study, and most importantly, producing images perfectly registered in space and time that provide simultaneous information about two distinct body functions. The ability of single photon emission computed tomography (SPECT) to measure and differentiate energies of the emitted photons makes it well suited for DI imaging. However, since scattered photons originating from one radioisotope may be detected in the energy window of the other and thus degrade image quality and quantitative accuracy, scatter and crosstalk corrections must be applied. The decay characteristics of 111In and 67Ga, which are suitable for quantitative DI imaging for up to 2 weeks post-injection, led us to investigate the performance of simultaneous 111In/67Ga SPECT imaging using a small-animal pre-clinical scanner. A series of phantom experiments were performed to investigate image quality and accuracy of activity quantification in 111In/67Ga images acquired with three different collimators and reconstructed from different photopeak combinations. The triple energy window (TEW) method was used to correct for scatter and crosstalk. Based on these phantom studies, the optimal selection of collimator and energy window settings was determined. When using these optimal settings, submillimeter-size structures were distinguishable in the reconstructed images and quantification errors below 20% were achieved for both isotopes. The optimal parameters were subsequently applied to an in vivo animal study. The determination of the distinct pharmacokinetic profiles of two polymer radiopharmaceuticals injected simultaneously, but by different administration routes (intravenously and intraperitoneally) into a single animal demonstrated the feasibility of simultaneous 111In/67Ga SPECT.


Assuntos
Radioisótopos de Gálio/farmacocinética , Radioisótopos de Índio/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas
13.
EJNMMI Phys ; 5(1): 25, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318563

RESUMO

BACKGROUND: Routine dosimetry is essential for personalized 177Lu-octreotate peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NETs), but practical and robust dosimetry methods are needed for wide clinical adoption. The aim of this study was to assess the accuracy and inter-observer reproducibility of simplified dosimetry protocols based on quantitative single-photon emission computed tomography (QSPECT) with a limited number of scanning time points. We also updated our personalized injected activity (IA) prescription scheme. METHODS: Seventy-nine NET patients receiving 177Lu-octreotate therapy (with a total of 279 therapy cycles) were included in our study. Three-time-point (3TP; days 0, 1, and 3) QSPECT scanning was performed following each therapy administration. Dosimetry was obtained using small volumes of interest activity concentration sampling for the kidney, the bone marrow and the tumor having the most intense uptake. Accuracy of the simplified dosimetry based on two-time-point (2TP; days 1 and 3, monoexponential fit) or a single-time-point (1TPD3; day 3) scanning was assessed, as well as that of hybrid methods based on 2TP for the first cycle and 1TP (day 1 or 3; 2TP/1TPD1 and 2TP/1TPD3, respectively) or no imaging at all (based on IA only; 2TP/no imaging (NI)) for the subsequent induction cycles. The inter-observer agreement was evaluated for the 3TP, 2TP, and hybrid 2TP/1TPD3 methods using a subset of 60 induction cycles (15 patients). The estimated glomerular filtration rate (eGFR), body size descriptors (weight, body surface area (BSA), lean body weight (LBW)), and products of both were assessed for their ability to predict IA per renal absorbed dose at the first cycle. RESULTS: The 2TP dosimetry estimates correlated highly with those from the 3TP data for all tissues (Spearman r > 0.99, P < 0.0001) with small relative errors between the methods, particularly for the kidney and the tumor, with median relative errors not exceeding 2% and interdecile ranges spanning over less than 6% and 4%, respectively, for the per-cycle and cumulative estimates. For the bone marrow, the errors were slightly greater (median errors < 6%, interdecile ranges < 14%). Overall, the strength of correlations of the absorbed dose estimates from the simplified methods with those from the 3TP scans tended to progressively decrease, and the relative errors to increase, in the following order: 2TP, 2TP/1TPD3, 1TPD3, 2TP/1TPD1, and 2TP/NI. For the tumor, the 2TP/NI scenario was highly inaccurate due to the interference of the therapeutic response. There was an excellent inter-observer agreement between the three observers, in particular for the renal absorbed dose estimated using the 3TP and 2TP methods, with mean errors lesser than 1% and standard deviations of 5% or lower. The eGFR · LBW and eGFR · BSA products best predicted the ratio of IA to the renal dose (GBq/Gy) for the first cycle (Spearman r = 0.41 and 0.39, respectively; P < 0.001). For the first cycle, the personalized IA proportional to eGFR · LBW or eGFR · BSA decreased the range of delivered renal absorbed dose between patients as compared with the fixed IA. For the subsequent cycles, the optimal personalized IA could be determined based on the prior cycle renal GBq/Gy with an error of less than 21% in 90% of patients. CONCLUSIONS: A simplified dosimetry protocol based on two-time-point QSPECT scanning on days 1 and 3 post-PRRT provides reproducible and more accurate dose estimates than the techniques relying on a single time point for non-initial or all cycles and results in limited patient inconvenience as compared to protocols involving scanning at later time points. Renal absorbed dose over the 4-cycle induction PRRT course can be standardized by personalizing IA based on the product of eGFR with LBW or BSA for the first cycle and on prior renal dosimetry for the subsequent cycles.

14.
EJNMMI Phys ; 5(1): 8, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29717385

RESUMO

BACKGROUND: Camera calibration, which translates reconstructed count map into absolute activity map, is a prerequisite procedure for quantitative SPECT imaging. Both planar and tomographic scans using different phantom geometries have been proposed for the determination of the camera calibration factor (CF). However, there is no consensus on which approach is the best. The aim of this study is to evaluate all these calibration methods, compare their performance, and propose a practical and accurate calibration method for SPECT quantitation of therapeutic radioisotopes. Twenty-one phantom experiments (Siemens Symbia SPECT/CT) and 12 Monte Carlo simulations (GATE v6.1) using three therapy isotopes (131I, 177Lu, and 188Re) have been performed. The following phantom geometries were used: (1) planar scans of point source in air (PS), (2) tomographic scans of insert(s) filled with activity placed in non-radioactive water (HS + CB), (3) tomographic scans of hot insert(s) in radioactive water (HS + WB), and (4) tomographic scans of cylinders uniformly filled with activity (HC). Tomographic data were reconstructed using OSEM with CT-based attenuation correction and triple energy window (TEW) scatter correction, and CF was determined using total counts in the reconstructed image, while for planar scans, the photopeak counts, corrected for scatter and background with TEW, were used. Additionally, for simulated data, CF obtained from primary photons only was analyzed. RESULTS: For phantom experiments, CF obtained from PS and HS + WB agreed to within 6% (below 3% if experiments performed on the same day are considered). However, CF from HS + CB exceeded those from PS by 4-12%. Similar trend was found in simulation studies. Analysis of CFs from primary photons helped us to understand this discrepancy. It was due to underestimation of scatter by the TEW method, further enhanced by attenuation correction. This effect becomes less important when the source is distributed over the entire phantom volume (HS + WB and HC). CONCLUSIONS: Camera CF could be determined using planar scans of a point source, provided that the scatter and background contributions are removed, for example using the clinically available TEW method. This approach is simple and yet provides CF with sufficient accuracy (~ 5%) to be used in clinics for radiotracer quantification.

15.
EJNMMI Phys ; 5(1): 2, 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29322344

RESUMO

BACKGROUND: The aim of this study was to investigate the deadtime (DT) effects that are present in 177Lu images acquired after radionuclide therapy injection, assess differences in DT based on the full spectrum and the photopeak-only measurements, and design a method to correct for the deadtime losses. A Siemens SymbiaT SPECT/CT camera with a medium energy collimator was used. A 295-mL bottle was placed off-center inside a large cylinder filled with water, and 177Lu activity was sequentially added up to a maximum of 9.12 GBq. The true count rates vs. observed count rates were plotted and fitted to the DT paralyzable model. This analysis was performed using counts recorded in the full spectrum and in other energy windows. The DT correction factors were calculated using the percentage difference between the true and the observed count rates. RESULTS: The DT values of 5.99 ± 0.02 µs, 4.60 ± 0.052 µs, and 0.19 ± 0.18 µs were obtained for the primary photons (PP) recorded in the 113- and 208-keV photopeaks and for the full spectrum, respectively. For the investigated range of count rates, the DT correction factors of up to 23% were observed for PP corresponding to the 113-keV photopeak, while for the 208-keV photopeak values of up to 20% were obtained. These values were almost three times higher than the deadtime correction factors derived from the full spectrum. CONCLUSIONS: The paralyzable model showed to be appropriate for the investigated range of counts, which were five to six times higher than those observed in the patient post-therapy imaging. Our results suggest that the deadtime corrections should be based on count losses in the scatter-corrected photopeak window and not on the deadtime determined from the full spectrum. Finally, a general procedure that can be followed to correct patient images for deadtime is presented.

16.
Comput Med Imaging Graph ; 63: 52-66, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29336922

RESUMO

Tumor volume and metabolic activity are two robust imaging biomarkers for predicting early therapy response in F-fluorodeoxyglucose (FDG) positron emission tomography (PET), which is a modality to image the distribution of radiotracers and thereby observe functional processes in the body. To date, estimation of these two biomarkers requires a lesion segmentation step. While the segmentation methods requiring extensive user interaction have obvious limitations in terms of time and reproducibility, automatically estimating activity from segmentation, which involves integrating intensity values over the volume is also suboptimal, since PET is an inherently noisy modality. Although many semi-automatic segmentation based methods have been developed, in this paper, we introduce a method which completely eliminates the segmentation step and directly estimates the volume and activity of the lesions. We trained two parallel ensemble models using locally extracted 3D patches from phantom images to estimate the activity and volume, which are derivatives of other important quantification metrics such as standardized uptake value (SUV) and total lesion glycolysis (TLG). For validation, we used 54 clinical images from the QIN Head and Neck collection on The Cancer Imaging Archive, as well as a set of 55 PET scans of the Elliptical Lung-Spine Body Phantom™with different levels of noise, four different reconstruction methods, and three different background activities, namely; air, water, and hot background. In the validation on phantom images, we achieved relative absolute error (RAE) of 5.11 % ±3.5% and 5.7 % ±5.25% for volume and activity estimation, respectively, which represents improvements of over 20% and 6% respectively, compared with the best competing methods. From the validation performed using clinical images, we found that the proposed method is capable of obtaining almost the same level of agreement with a group of trained experts, as a single trained expert is, indicating that the method has the potential to be a useful tool in clinical practice.


Assuntos
Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Carga Tumoral , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Aprendizado de Máquina
17.
EJNMMI Phys ; 4(1): 24, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29030760

RESUMO

BACKGROUND: Technetium-99m-hydrazinonicotinamide-Tyr3-octreotide (99mTc-HYNIC-TOC) is recognized as a promising radiopharmaceutical for diagnosing neuroendocrine tumors (NETs). However, 99mTc-HYNIC-TOC dosimetry has been investigated only for adults. As pediatric radionuclide therapies become increasingly common, similar dosimetric studies for children are urgently needed. The aim of this study is to report personalized image-based biodistributions and dosimetry evaluations for children studies performed using 99mTc-HYNIC-TOC and to compare them with those from adult subjects. Eleven children/teenage patients with suspected or diagnosed NETs were enrolled. Patient imaging included a series of 2-3 whole-body planar scans and SPECT/CT performed over 2-24 h after the 99mTc-HYNIC-TOC injections. The time-integrated activity coefficients (TIACs) were obtained from the hybrid planar/SPECT technique. Patient-specific doses were calculated using both the voxel-level and the organ-level approaches. Estimated children doses were compared with adults' dosimetry. RESULTS: Pathologic uptake was observed in five patients. TIACs for normal organs with significant uptakes, i.e., kidneys, spleen, and liver, were similar to adults' TIACs. Using the voxel-level approach, the average organ doses for children were 0.024 ± 0.009, 0.032 ± 0.017, and 0.017 ± 0.007 mGy/MBq for the kidneys, spleen, and liver, respectively, which were 30% larger than adults' doses. Similar values were obtained from the organ-level dosimetry when using OLINDA with adapted organ masses. Tumor doses were 0.010-0.024 mGy/MBq. However, cross-organ contributions were much larger in children than in adults, comprising about 15-40% of the total organ/tumor doses. No statistical differences were found between mean doses and dose distributions in patients with and without pathologic uptakes. CONCLUSION: Although the children TIACs were similar to those in adults, their doses were about 30% higher. No significant correlation was found between the children's doses and their ages. However, substantial inter-patient variability in radiotracer uptake, indicating disparity in expression of somatostatin receptor between different patients, emphasizes the importance and necessity of patient-specific dosimetry for clinical studies.

18.
Phys Med Biol ; 62(16): 6379-6396, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28726679

RESUMO

The main applications of 188Re in radionuclide therapies include trans-arterial liver radioembolization and palliation of painful bone-metastases. In order to optimize 188Re therapies, the accurate determination of radiation dose delivered to tumors and organs at risk is required. Single photon emission computed tomography (SPECT) can be used to perform such dosimetry calculations. However, the accuracy of dosimetry estimates strongly depends on the accuracy of activity quantification in 188Re images. In this study, we performed a series of phantom experiments aiming to investigate the accuracy of activity quantification for 188Re SPECT using high-energy and medium-energy collimators. Objects of different shapes and sizes were scanned in Air, non-radioactive water (Cold-water) and water with activity (Hot-water). The ordered subset expectation maximization algorithm with clinically available corrections (CT-based attenuation, triple-energy window (TEW) scatter and resolution recovery was used). For high activities, the dead-time corrections were applied. The accuracy of activity quantification was evaluated using the ratio of the reconstructed activity in each object to this object's true activity. Each object's activity was determined with three segmentation methods: a 1% fixed threshold (for cold background), a 40% fixed threshold and a CT-based segmentation. Additionally, the activity recovered in the entire phantom, as well as the average activity concentration of the phantom background were compared to their true values. Finally, Monte-Carlo simulations of a commercial [Formula: see text]-camera were performed to investigate the accuracy of the TEW method. Good quantification accuracy (errors <10%) was achieved for the entire phantom, the hot-background activity concentration and for objects in cold background segmented with a 1% threshold. However, the accuracy of activity quantification for objects segmented with 40% threshold or CT-based methods decreased (errors >15%), mostly due to partial-volume effects. The Monte-Carlo simulations confirmed that TEW-scatter correction applied to 188Re, although practical, yields only approximate estimates of the true scatter.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Radioimunoterapia , Radioisótopos/uso terapêutico , Rênio/uso terapêutico , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Humanos , Método de Monte Carlo , Radiometria , Espalhamento de Radiação
19.
EJNMMI Phys ; 4(1): 2, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28063068

RESUMO

BACKGROUND: The aim of the study is to assess accuracy of activity quantification of 177Lu studies performed according to recommendations provided by the committee on Medical Internal Radiation Dose (MIRD) pamphlets 23 and 26. The performances of two scatter correction and three segmentation methods were compared. Additionally, the accuracy of tomographic and planar methods for determination of the camera normalization factor (CNF) was evaluated. Eight phantoms containing inserts of different sizes and shapes placed in air, water, and radioactive background were scanned using a Siemens SymbiaT SPECT/CT camera. Planar and tomographic scans with 177Lu sources were used to measure CNF. Images were reconstructed with our SPEQToR software using resolution recovery, attenuation, and two scatter correction methods (analytical photon distribution interpolated (APDI) and triple energy window (TEW)). Segmentation was performed using a fixed threshold method for both air and cold water scans. For hot water experiments three segmentation methods were compared as folows: a 40% fixed threshold, segmentation based on CT images, and our iterative adaptive dual thresholding (IADT). Quantification error, defined as the percent difference between experimental and true activities, was evaluated. RESULTS: Quantification error for scans in air was better for TEW scatter correction (<6%) than for APDI (<11%). This trend was reversed for scans in water (<10% for APDI and <14% for TEW). For hot water, the best results (<18% for small objects and <5% for objects >100 ml) were obtained when APDI and IADT were used for scatter correction and segmentation, respectively. Additionally, we showed that planar acquisitions with scatter correction and tomographic scans provide similar CNF values. This is an important finding because planar acquisitions are easier to perform than tomographic scans. TEW and APDI resulted in similar quantification errors with APDI showing a small advantage for objects placed in medium with non-uniform density. CONCLUSIONS: Following the MIRD recommendations for data acquisition and reconstruction resulted in accurate activity quantification (errors <5% for large objects). However, techniques for better organ/tumor segmentation must still be developed.

20.
Phys Med ; 33: 26-37, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28007432

RESUMO

PURPOSE: The goal of this study was to investigate the performance of a pre-clinical SPECT/PET/CT system for 188Re imaging. METHODS: Phantom experiments were performed aiming to assess the characteristics of two multi-pinhole collimators: ultra-high resolution collimator (UHRC) and high-energy ultra high resolution collimator (HE-URHC) for imaging 188Re. The spatial resolution, image contrast and contrast-to-noise ratio (CNR) were investigated using micro-Jaszczak phantoms. Additionally, the quantification accuracy of 188Re images was evaluated using two custom-designed phantoms. The 188Re images were compared to those obtained with 99mTc (gold standard); the acquired energy spectra were analyzed and Monte-Carlo simulations of the UHRC were performed. To verify our findings, a C57BL/6-mouse was injected with 188Re-microspheres and scanned with both collimators. RESULTS: The spatial resolution achieved in 188Re images was comparable to that of 99mTc. Acquisitions using HE-UHRC yielded 188Re images with higher contrast and CNR than UHRC. Studies of quantitative accuracy of 188Re images resulted in <10% errors for both collimators when the activity was calculated within a small VOI around the object of interest. Similar quantification accuracy was achieved for 99mTc. However, 188Re images showed much higher levels of noise in the background. Monte-Carlo simulations showed that 188Re imaging with UHRC is severely affected by down-scattered photons from high-energy emissions. The mouse images showed similar biodistribution of 188Re-microspheres for both collimators. CONCLUSIONS: VECTor/CT provided 188Re images quantitatively accurate and with quality comparable to 99mTc. However, due to large penetration of UHRC by high-energy photons, the use of the HE-UHRC for imaging 188Re in VECTor/CT is recommended.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Rênio , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Processamento de Imagem Assistida por Computador , Camundongos , Método de Monte Carlo , Imagens de Fantasmas , Radioisótopos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...