Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450513

RESUMO

Mitapivat, a pyruvate kinase (PK) activator, shows great potential as a sickle cell disease (SCD)- modifying therapy. Safety and efficacy of mitapivat as a long-term maintenance therapy is currently being evaluated in two open-label studies. Here we apply a comprehensive multi-omics approach to investigate the impact of activating PK on red blood cells (RBCs) from 15 SCD patients. HbSS patients were enrolled in one of the open label, extended studies (NCT04610866). Leuko-depleted RBCs obtained from fresh whole blood at baseline (visit 1, V1), prior to drug initiation and longitudinal time points over the course of the study were processed for multiomics through a stepwise extraction of metabolites, lipids and proteins. Mitapivat therapy had significant effects on the metabolome, lipidome and proteome of SCD RBCs. Mitapivat decreased 2,3-diphosphoglycerate (DPG) levels, increased adenosine triphosphate (ATP) levels, and improved hematologic and sickling parameters in patients with SCD. Agreement between omics measurements and clinical measurements confirmed the specificity of mitapivat on targeting late glycolysis, with glycolytic metabolites ranking as the top correlates to parameters of hemoglobin S (HbS) oxygen affinity (p50) and sickling kinetics (t50) during treatment. Mitapivat markedly reduced levels of proteins of mitochondrial origin within 2 weeks of initiation of drug treatment, with minimal changes in the reticulocyte counts. The first six months of treatment also witnessed transient elevation of lysophosphatidylcholines and oxylipins with depletion in free fatty acids, suggestive of an effect on membrane lipid remodeling. Multi-omics analysis of RBCs identified benefits for glycolysis, as well as activation of the Lands cycle.

2.
Blood Adv ; 8(7): 1806-1816, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38181784

RESUMO

ABSTRACT: Stable, mixed-donor-recipient chimerism after allogeneic hematopoietic stem cell transplantation (HSCT) for patients with sickle cell disease (SCD) is sufficient for phenotypic disease reversal, and results from differences in donor/recipient-red blood cell (RBC) survival. Understanding variability and predictors of RBC survival among patients with SCD before and after HSCT is critical for gene therapy research which seeks to generate sufficient corrected hemoglobin to reduce polymerization thereby overcoming the red cell pathology of SCD. This study used biotin labeling of RBCs to determine the lifespan of RBCs in patients with SCD compared with patients who have successfully undergone curative HSCT, participants with sickle cell trait (HbAS), and healthy (HbAA) donors. Twenty participants were included in the analysis (SCD pre-HSCT: N = 6, SCD post-HSCT: N = 5, HbAS: N = 6, and HbAA: N = 3). The average RBC lifespan was significantly shorter for participants with SCD pre-HSCT (64.1 days; range, 35-91) compared with those with SCD post-HSCT (113.4 days; range, 105-119), HbAS (126.0 days; range, 119-147), and HbAA (123.7 days; range, 91-147) (P<.001). RBC lifespan correlated with various hematologic parameters and strongly correlated with the average final fraction of sickled RBCs after deoxygenation (P<.001). No adverse events were attributable to the use of biotin and related procedures. Biotin labeling of RBCs is a safe and feasible methodology to evaluate RBC survival in patients with SCD before and after HSCT. Understanding differences in RBC survival may ultimately guide gene therapy protocols to determine hemoglobin composition required to reverse the SCD phenotype as it relates directly to RBC survival. This trial was registered at www.clinicaltrials.gov as #NCT04476277.


Assuntos
Anemia Falciforme , Transplante de Células-Tronco Hematopoéticas , Humanos , Anemia Falciforme/patologia , Biotina , Eritrócitos/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Hemoglobinas
3.
Proc Natl Acad Sci U S A ; 119(40): e2210779119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161945

RESUMO

Stem cell transplantation and genetic therapies offer potential cures for patients with sickle cell disease (SCD), but these options require advanced medical facilities and are expensive. Consequently, these treatments will not be available for many years to the majority of patients suffering from this disease. What is urgently needed now is an inexpensive oral drug in addition to hydroxyurea, the only drug approved by the FDA that inhibits sickle-hemoglobin polymerization. Here, we report the results of the first phase of our phenotypic screen of the 12,657 compounds of the Scripps ReFRAME drug repurposing library using a recently developed high-throughput assay to measure sickling times following deoxygenation to 0% oxygen of red cells from sickle trait individuals. The ReFRAME library is a very important collection because the compounds are either FDA-approved drugs or have been tested in clinical trials. From dose-response measurements, 106 of the 12,657 compounds exhibit statistically significant antisickling at concentrations ranging from 31 nM to 10 µM. Compounds that inhibit sickling of trait cells are also effective with SCD cells. As many as 21 of the 106 antisickling compounds emerge as potential drugs. This estimate is based on a comparison of inhibitory concentrations with free concentrations of oral drugs in human serum. Moreover, the expected therapeutic potential for each level of inhibition can be predicted from measurements of sickling times for cells from individuals with sickle syndromes of varying severity. Our results should motivate others to develop one or more of these 106 compounds into drugs for treating SCD.


Assuntos
Anemia Falciforme , Antidrepanocíticos , Antidrepanocíticos/farmacologia , Antidrepanocíticos/uso terapêutico , Reposicionamento de Medicamentos , Hemoglobina Falciforme , Humanos , Hidroxiureia/farmacologia , Oxigênio/uso terapêutico
4.
Blood ; 138(13): 1172-1181, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34197597

RESUMO

The issue of treating sickle cell disease with drugs that increase hemoglobin oxygen affinity has come to the fore with the US Food and Drug Administration approval in 2019 of voxelotor, the only antisickling drug approved since hydroxyurea in 1998. Voxelotor reduces sickling by increasing the concentration of the nonpolymerizing, high oxygen affinity R (oxy) conformation of hemoglobin S (HbS). Treatment of sickle cell patients with voxelotor increases Hb levels and decreases indicators of hemolysis, but with no indication as yet that it reduces the frequency of pain episodes. In this study, we used the allosteric model of Monod, Wyman, and Changeux to simulate whole-blood oxygen dissociation curves and red cell sickling in the absence and presence of voxelotor under the in vivo conditions of rapid oxygen pressure decreases. Our modeling agrees with results of experiments using a new robust assay, which shows the large, expected decrease in sickling from the drug. The modeling indicates, however, that the increase in oxygen delivery from reduced sickling is largely offset by the increase in oxygen affinity. The net result is that the drug increases overall oxygen delivery only at the very lowest oxygen pressures. However, reduction of sickling mitigates red cell damage and explains the observed decrease in hemolysis. More importantly, our modeling of in vivo oxygen dissociation, sickling, and oxygen delivery suggests that drugs that increase fetal Hb or decrease mean corpuscular hemoglobin concentration (MCHC) should be more therapeutically effective than drugs that increase oxygen affinity.


Assuntos
Anemia Falciforme/tratamento farmacológico , Antidrepanocíticos/uso terapêutico , Benzaldeídos/uso terapêutico , Hemoglobina Falciforme/metabolismo , Oxigênio/metabolismo , Pirazinas/uso terapêutico , Pirazóis/uso terapêutico , Anemia Falciforme/sangue , Anemia Falciforme/metabolismo , Antidrepanocíticos/farmacologia , Benzaldeídos/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemoglobina Falciforme/química , Humanos , Modelos Moleculares , Oxigênio/sangue , Pirazinas/farmacologia , Pirazóis/farmacologia
5.
Proc Natl Acad Sci U S A ; 117(26): 15018-15027, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32527859

RESUMO

The pathology of sickle cell disease is caused by polymerization of the abnormal hemoglobin S upon deoxygenation in the tissues to form fibers in red cells, causing them to deform and occlude the circulation. Drugs that allosterically shift the quaternary equilibrium from the polymerizing T quaternary structure to the nonpolymerizing R quaternary structure are now being developed. Here we update our understanding on the allosteric control of fiber formation at equilibrium by showing how the simplest extension of the classic quaternary two-state allosteric model of Monod, Wyman, and Changeux to include tertiary conformational changes provides a better quantitative description. We also show that if fiber formation is at equilibrium in vivo, the vast majority of cells in most tissues would contain fibers, indicating that it is unlikely that the disease would be survivable once the nonpolymerizing fetal hemoglobin has been replaced by adult hemoglobin S at about 1 y after birth. Calculations of sickling times, based on a recently discovered universal relation between the delay time prior to fiber formation and supersaturation, show that in vivo fiber formation is very far from equilibrium. Our analysis indicates that patients survive because the delay period allows the majority of cells to escape the small vessels of the tissues before fibers form. The enormous sensitivity of the duration of the delay period to intracellular hemoglobin composition also explains why sickle trait, the heterozygous condition, and the compound heterozygous condition of hemoglobin S with pancellular hereditary persistence of fetal hemoglobin are both relatively benign conditions.


Assuntos
Anemia Falciforme/metabolismo , Hemoglobina Falciforme/química , Oxigênio/metabolismo , Regulação Alostérica , Eritrócitos/química , Eritrócitos/metabolismo , Hemoglobina Fetal/química , Hemoglobina Fetal/metabolismo , Hemoglobina Falciforme/metabolismo , Humanos , Cinética , Oxigênio/química
6.
J Phys Chem B ; 122(49): 11468-11477, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30215522

RESUMO

Quenching of the triplet state of tryptophan by close contact with cysteine provides a tool for measuring the rate of intramolecular contact formation, one of the most elementary events in the folding process, in peptides and proteins using only natural probes. Here we present a study performed on a stabilized mutant of the second ß-hairpin of the GB1 domain, where we combine steady-state fluorescence, laser-induced temperature-jump, and contact formation measurements to unveil the role of elementary structural components on hairpin dynamics and overall stability. In particular, our methodology provides access to the conformational dynamics of both the folded and unfolded state of the hairpin under native conditions, revealing the presence of extremely slow dynamics on the microsecond time scale in the unfolded state and coexistence of structures with partial pairing of the tails in the folded state. Comparing model peptides that mimic the turn sequence, we found that both ion pairing and hydrogen bonding due to the threonine side chain contribute to the propensity of turn formation but not to the much slower dynamics of the hydrophobic core formation. Interestingly, the dynamics of the turn region in isolation are significantly faster than the dynamics measured for the unfolded state of the complete hairpin, suggesting that non-native hydrophobic contacts slow down the reconfiguration dynamics of the unfolded state. Overall, the information extracted from these experiments provides kinetic limits on interconversions among conformational populations, hence enabling a simplified multistate free-energy landscape for the GB1 hairpin to be drawn.


Assuntos
Proteínas de Bactérias/química , Cisteína/química , Imunoglobulina G/química , Simulação de Dinâmica Molecular , Triptofano/química , Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Streptococcus/química , Temperatura
7.
J Phys Chem B ; 122(49): 11579-11590, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30179501

RESUMO

The polymerization of the mutant hemoglobin S upon deoxygenation to form fibers in red blood cells of patients suffering from sickle-cell anemia results in changes in cell shape and rigidity, also known as sickling, which underlie the pathology of the disease. While much has been learned about the fundamental physical chemistry of the polymerization process, transferring these insights to sickling of red cells under in vivo conditions requires being able to monitor, and ultimately predict, the time course of cellular sickling under physiological conditions of deoxygenation. To this end, we have developed an experimental technique for tracking the temporal evolution of the sickling of red blood cells under laboratory deoxygenation conditions, based on the automated analysis of sequences of microscope images and machine-learning analysis to characterize cell morphology. As an aid in the quantitative understanding of these experiments, we have developed a computational framework for simulating the time dependence of sickling in populations of red blood cells which incorporates the current theoretical and empirical understanding of the physical chemistry of the sickling process. In order to apply these techniques to our experiments, we have theoretically determined the time course of deoxygenation by solving the diffusion equation for oxygen in our experimental geometry. With this combined description, we are able to reproduce our experimentally observed kinetics of sickling, suggesting that our theoretical approach should be applicable to physiological deoxygenation scenarios.


Assuntos
Anemia Falciforme/metabolismo , Hemoglobina Falciforme/biossíntese , Simulação de Dinâmica Molecular , Oxigênio/metabolismo , Difusão , Eritrócitos/química , Eritrócitos/metabolismo , Hemoglobina Falciforme/química , Humanos , Tamanho da Partícula , Polimerização
8.
Proc Natl Acad Sci U S A ; 114(5): E689-E696, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096387

RESUMO

Although it has been known for more than 60 years that the cause of sickle cell disease is polymerization of a hemoglobin mutant, hydroxyurea is the only drug approved for treatment by the US Food and Drug Administration. This drug, however, is only partially successful, and the discovery of additional drugs that inhibit fiber formation has been hampered by the lack of a sensitive and quantitative cellular assay. Here, we describe such a method in a 96-well plate format that is based on laser-induced polymerization in sickle trait cells and robust, automated image analysis to detect the precise time at which fibers distort ("sickle") the cells. With this kinetic method, we show that small increases in cell volume to reduce the hemoglobin concentration can result in therapeutic increases in the delay time prior to fiber formation. We also show that, of the two drugs (AES103 and GBT440) in clinical trials that inhibit polymerization by increasing oxygen affinity, one of them (GBT440) also inhibits sickling in the absence of oxygen by two additional mechanisms.


Assuntos
Antidrepanocíticos/farmacologia , Tamanho Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Furaldeído/análogos & derivados , Anemia Falciforme/terapia , Eritrócitos/fisiologia , Furaldeído/farmacologia , Hemoglobina Falciforme/metabolismo , Humanos , Cinética , Oxigênio
9.
Nat Struct Mol Biol ; 23(5): 459-61, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27018803

RESUMO

The thermodynamics and kinetics of the aggregation of sickle-cell hemoglobin into fibers have been studied in great detail under a wide range of solution conditions. The stability of the fiber is measured by the solubility; the kinetics is characterized by a delay before the appearance of fibers. A review of data in the literature shows that there is no correlation of the delay time with fiber stability and only a weak correlation with the initial protein concentration. There is, however, a striking collapse of all the data onto a single universal curve when the delay time is plotted versus the supersaturation, which is the ratio of the initial protein concentration to the solubility, expressed as activities. Collapse onto the same universal curve is also obtained when using delay times calculated from the double-nucleation theoretical model.


Assuntos
Hemoglobina Falciforme/química , Humanos , Cinética , Modelos Moleculares , Agregados Proteicos , Solubilidade , Termodinâmica
10.
Chem Phys ; 422: 229-237, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24443626

RESUMO

Folding and unfolding rates for the ultrafast folding villin subdomain were determined from a photon-by-photon analysis of fluorescence trajectories in single molecule FRET experiments. One of the obstacles to measuring fast kinetics in single molecule fluorescence experiments is blinking of the fluorophores on a timescale that is not well separated from the process of interest. By incorporating acceptor blinking into a two-state kinetics model, we show that it is possible to extract accurate rate coefficients on the microsecond time scale for folding and unfolding using the maximum likelihood method of I.V. Gopich and A. Szabo. This method yields the most likely parameters of a given model that can reproduce the observed photon trajectories. The extracted parameters agree with both the decay rate of the donor-acceptor cross correlation function and the results of ensemble equilibrium and kinetic experiments using nanosecond laser temperature jump.

11.
Methods Mol Biol ; 899: 453-70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22735969

RESUMO

Protein aggregation is believed to be responsible for a number of human diseases and limits the yields of pharmaceutical proteins during production. Computer simulations can be used to develop novel experimentally testable hypotheses pertaining to aggregation. While all-atom simulations with explicit solvent are too computationally intensive to address the multitude of relevant time scales, coarse-grained models make it possible to observe the transition of monomers to an equilibrium containing aggregates. Here, we provide the reader with background information and a list of steps for setting up, performing, and analyzing computer simulations of aggregating coarse-grained (CG) proteins.


Assuntos
Simulação por Computador , Modelos Moleculares , Proteínas/química , Algoritmos , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Dobramento de Proteína , Solventes/química
12.
J Phys Chem B ; 115(43): 12632-7, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21923150

RESUMO

The defining property of two-state models of protein folding is that the measured relaxation rates are independent of the starting conditions and only depend on the final conditions. In this work we compare the kinetics of the very fast folding villin subdomain measured after a large change in denaturant concentration using an ultrarapid microfluidic mixer with the kinetics measured after a small temperature change in a laser T-jump experiment and find a significant difference in the observed folding kinetics. The final conditions of temperature and denaturant concentration and the use of tryptophan fluorescence as a probe are the same in both experiments, while the initial conditions are very different. The slower mixing kinetics show no evidence of the faster phase in T-jump experiments, which would support models of on- or off-pathway intermediates. Rather we interpret the combined mixer and T-jump experiments as evidence of an ensemble of unfolded states, some of which are traps. The ensemble after dilution from high denaturant is more expanded than the ensemble after an increase in temperature and, on average, takes longer to reach the native state.


Assuntos
Proteínas dos Microfilamentos/química , Sequência de Aminoácidos , Guanidina/química , Cinética , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Temperatura , Triptofano/química
13.
Proc Natl Acad Sci U S A ; 108(15): 6103-8, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21441105

RESUMO

Determining the rate of forming the truly folded conformation of ultrafast folding proteins is an important issue for both experiments and simulations. The double-norleucine mutant of the 35-residue villin subdomain is the focus of recent computer simulations with atomistic molecular dynamics because it is currently the fastest folding protein. The folding kinetics of this protein have been measured in laser temperature-jump experiments using tryptophan fluorescence as a probe of overall folding. The conclusion from the simulations, however, is that the rate determined by fluorescence is significantly larger than the rate of overall folding. We have therefore employed an independent experimental method to determine the folding rate. The decay of the tryptophan triplet-state in photoselection experiments was used to monitor the change in the unfolded population for a sequence of the villin subdomain with one amino acid difference from that of the laser temperature-jump experiments, but with almost identical equilibrium properties. Folding times obtained in a two-state analysis of the results from the two methods at denaturant concentrations varying from 1.5-6.0 M guanidinium chloride are in excellent agreement, with an average difference of only 20%. Polynomial extrapolation of all the data to zero denaturant yields a folding time of 220 (+100,-70) ns at 283 K, suggesting that under these conditions the barrier between folded and unfolded states has effectively disappeared--the so-called "downhill scenario."


Assuntos
Proteínas dos Microfilamentos/química , Simulação de Dinâmica Molecular , Cristalografia por Raios X , Fluorescência , Cinética , Proteínas dos Microfilamentos/genética , Mutação , Norleucina/química , Norleucina/genética , Dobramento de Proteína , Estrutura Terciária de Proteína/genética , Temperatura , Triptofano/química , Triptofano/genética
14.
J Phys Chem A ; 115(16): 3642-56, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20509636

RESUMO

Recently developed statistical methods by Gopich and Szabo were used to extract folding and unfolding rate coefficients from single-molecule Förster resonance energy transfer (FRET) data for proteins with kinetics too fast to measure waiting time distributions. Two types of experiments and two different analyses were performed. In one experiment bursts of photons were collected from donor and acceptor fluorophores attached to a 73-residue protein, α(3)D, freely diffusing through the illuminated volume of a confocal microscope system. In the second, the protein was immobilized by linkage to a surface, and photons were collected until one of the fluorophores bleached. Folding and unfolding rate coefficients and mean FRET efficiencies for the folded and unfolded subpopulations were obtained from a photon by photon analysis of the trajectories using a maximum likelihood method. The ability of the method to describe the data in terms of a two-state model was checked by recoloring the photon trajectories with the extracted parameters and comparing the calculated FRET efficiency histograms with the measured histograms. The sum of the rate coefficients for the two-state model agreed to within 30% with the relaxation rate obtained from the decay of the donor-acceptor cross-correlation function, confirming the high accuracy of the method. Interestingly, apparently reliable rate coefficients could be extracted using the maximum likelihood method, even at low (<10%) population of the minor component where the cross-correlation function was too noisy to obtain any useful information. The rate coefficients and mean FRET efficiencies were also obtained in an approximate procedure by simply fitting the FRET efficiency histograms, calculated by binning the donor and acceptor photons, with a sum of three-Gaussian functions. The kinetics are exposed in these histograms by the growth of a FRET efficiency peak at values intermediate between the folded and unfolded peaks as the bin size increases, a phenomenon with similarities to NMR exchange broadening. When comparable populations of folded and unfolded molecules are present, this method yields rate coefficients in very good agreement with those obtained with the maximum likelihood method. As a first step toward characterizing transition paths, the Viterbi algorithm was used to locate the most probable transition points in the photon trajectories.


Assuntos
Fótons , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Algoritmos , Biotina/química , Transferência Ressonante de Energia de Fluorescência , Cinética , Microscopia Confocal , Modelos Moleculares , Proteínas/síntese química , Proteínas/isolamento & purificação , Estreptavidina/química
15.
Proc Natl Acad Sci U S A ; 105(48): 18655-62, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19033473

RESUMO

An extensive set of equilibrium and kinetic data is presented and analyzed for an ultrafast folding protein--the villin subdomain. The equilibrium data consist of the excess heat capacity, tryptophan fluorescence quantum yield, and natural circular-dichroism spectrum as a function of temperature, and the kinetic data consist of time courses of the quantum yield from nanosecond-laser temperature-jump experiments. The data are well fit with three kinds of models--a three-state chemical-kinetics model, a physical-kinetics model, and an Ising-like theoretical model that considers 10(5) possible conformations (microstates). In both the physical-kinetics and theoretical models, folding is described as diffusion on a one-dimensional free-energy surface. In the physical-kinetics model the reaction coordinate is unspecified, whereas in the theoretical model, order parameters, either the fraction of native contacts or the number of native residues, are used as reaction coordinates. The validity of these two reaction coordinates is demonstrated from calculation of the splitting probability from the rate matrix of the master equation for all 10(5) microstates. The analysis of the data on site-directed mutants using the chemical-kinetics model provides information on the structure of the transition-state ensemble; the physical-kinetics model allows an estimate of the height of the free-energy barrier separating the folded and unfolded states; and the theoretical model provides a detailed picture of the free-energy surface and a residue-by-residue description of the evolution of the folded structure, yet contains many fewer adjustable parameters than either the chemical- or physical-kinetics models.


Assuntos
Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Modelos Teóricos , Conformação Proteica , Dobramento de Proteína , Cinética , Proteínas dos Microfilamentos/genética , Modelos Moleculares , Dados de Sequência Molecular , Renaturação Proteica , Termodinâmica , Difração de Raios X
16.
Proc Natl Acad Sci U S A ; 105(47): 18320-5, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19020085

RESUMO

Nanosecond laser T-jump was used to measure the viscosity dependence of the folding kinetics of the villin subdomain under conditions where the viscogen has no effect on its equilibrium properties. The dependence of the unfolding/refolding relaxation time on solvent viscosity indicates a major contribution to the dynamics from internal friction. The internal friction increases with increasing temperature, suggesting a shift in the transition state along the reaction coordinate toward the native state with more compact structures, and therefore, a smaller diffusion coefficient due to increased landscape roughness. Fitting the data with an Ising-like model yields a relatively small position dependence for the diffusion coefficient. This finding is consistent with the excellent correlation found between experimental and calculated folding rates based on free energy barrier heights using the same diffusion coefficient for every protein.


Assuntos
Fricção , Proteínas/química , Cinética , Modelos Químicos , Dobramento de Proteína , Viscosidade
17.
J Am Chem Soc ; 129(47): 14564-5, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17983235

RESUMO

The connection between free-energy surfaces and chevron plots has been investigated in a laser temperature jump kinetic study of a small ultrafast folding protein, the 35-residue subdomain from the villin headpiece. Unlike all other proteins that have been studied so far, no measurable dependence of the unfolding/refolding relaxation rate on denaturant concentration was observed over a wide range of guanidinium chloride concentration. Analysis with a simple Ising-like theoretical model shows that this denaturant-invariant relaxation rate can be explained by a large movement of the major free energy barrier, together with a denaturant- and reaction coordinate-dependent diffusion coefficient.


Assuntos
Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Cinética , Modelos Biológicos , Desnaturação Proteica , Fatores de Tempo
18.
Trends Biotechnol ; 25(6): 254-61, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17433843

RESUMO

Protein aggregation is a challenge to the successful manufacture of protein therapeutics; it can impose severe limitations on purification yields and compromise formulation stability. Advances in computer power, and the wealth of computational studies pertaining to protein folding, have facilitated the development of molecular simulation as a tool to investigate protein misfolding and aggregation. Here, we highlight the successes of protein aggregation studies carried out in silico, with a particular emphasis on studies related to biotechnology. To conclude, we discuss future prospects for the field, and identify several biotechnology-related problems that would benefit from molecular simulation.


Assuntos
Cristalização/métodos , Modelos Químicos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Proteínas/química , Proteínas/ultraestrutura , Sítios de Ligação , Simulação por Computador , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Temperatura
19.
Biotechnol Bioeng ; 96(1): 1-8, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17136749

RESUMO

Computer simulation offers unique possibilities for investigating molecular-level phenomena difficult to probe experimentally. Drawing from a wealth of studies concerning protein folding, computational studies of protein aggregation are emerging. These studies have been successful in capturing aspects of aggregation known from experiment and are being used to refine experimental methods aimed at abating aggregation. Here we review molecular-simulation studies of protein aggregation conducted in our laboratory. Specific attention is devoted to issues with implications for biotechnology.


Assuntos
Simulação por Computador , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Proteínas/química , Proteínas/ultraestrutura , Análise de Sequência de Proteína/métodos , Sítios de Ligação , Dimerização , Ligação Proteica , Conformação Proteica , Dobramento de Proteína
20.
Biophys Chem ; 125(2-3): 350-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17055144

RESUMO

We have investigated the aggregation of protein L in 25% (vol/vol) TFE and 10 mM HCl. Under both conditions, aggregates adopt a fibrillar structure and bind dyes Congo Red and Thioflavin T consistent with the presence of amyloid fibrils. The kinetics of aggregation in 25% TFE suggest a linear-elongation mechanism with critical nucleus size of either two or three monomers. Aggregation kinetics in 10 mM HCl show a prolonged lag phase prior to a rapid increase in aggregation. The lag phase is time-dependent, but the time dependence can be eliminated by the addition of pre-formed seeds. Disaggregation studies show that for aggregates formed in TFE, aggregate stability is a strong function of aggregate age. For example, after 200 min of aggregation, 40% of the aggregation reaction is irreversible, while after 3 days over 60% is irreversible. When the final concentration of the denaturant, TFE, is reduced from 5% to 0, the amount of reversible aggregation doubles. Disaggregation studies of aggregates formed in TFE and 10 mM HCl reveal a complicated effect of pH on aggregate stability.


Assuntos
Amiloidose , Proteínas de Bactérias/metabolismo , Benzotiazóis , Vermelho Congo , Dimerização , Concentração de Íons de Hidrogênio , Cinética , Soluções , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...