Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 72(2): 472-81, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22127926

RESUMO

cJun NH(2)-terminal kinase (JNK) signaling has been implicated in the developmental morphogenesis of epithelial organs. In this study, we employed a compound deletion of the murine Jnk1 and Jnk2 genes in the mammary gland to evaluate the requirement for these ubiquitously expressed genes in breast development and tumorigenesis. JNK1/2 was not required for breast epithelial cell proliferation or motility. However, JNK1/2 deficiency caused increased branching morphogenesis and defects in the clearance of lumenal epithelial cells. In the setting of breast cancer development, JNK1/2 deficiency significantly increased tumor formation. Together, these findings established that JNK signaling is required for normal mammary gland development and that it has a suppressive role in mammary tumorigenesis.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Glândulas Mamárias Animais/enzimologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Neoplasias Mamárias Experimentais/enzimologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Movimento Celular/fisiologia , Feminino , Expressão Gênica , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Proteína Quinase 8 Ativada por Mitógeno/deficiência , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/deficiência , Proteína Quinase 9 Ativada por Mitógeno/genética
2.
Mol Cell Biol ; 31(7): 1565-76, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21282468

RESUMO

The c-Jun NH(2)-terminal kinase (JNK) signal transduction pathway causes increased gene expression mediated, in part, by members of the activating transcription factor protein (AP1) group. JNK is therefore implicated in the regulation of cell growth and cancer. To test the role of JNK in Ras-induced tumor formation, we examined the effect of compound ablation of the ubiquitously expressed genes Jnk1 plus Jnk2. We report that JNK is required for Ras-induced transformation of p53-deficient primary cells in vitro. Moreover, JNK is required for lung tumor development caused by mutational activation of the endogenous KRas gene in vivo. Together, these data establish that JNK plays a key role in Ras-induced tumorigenesis.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Lesões Pré-Cancerosas/enzimologia , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Apoptose , Caderinas/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/patologia , Inibição de Contato , Fibroblastos/metabolismo , Camundongos , Transdução de Sinais , Estresse Fisiológico , Ensaio Tumoral de Célula-Tronco , Proteína Supressora de Tumor p53/metabolismo
3.
Nat Cell Biol ; 12(12): 1242-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21102438

RESUMO

Mitogen-activated protein kinase (MAPK) cascades propagate a variety of cellular activities. Processive relay of signals through RAF-MEK-ERK modulates cell growth and proliferation. Signalling through this ERK cascade is frequently amplified in cancers, and drugs such as sorafenib (which is prescribed to treat renal and hepatic carcinomas) and PLX4720 (which targets melanomas) inhibit RAF kinases. Natural factors that influence ERK1/2 signalling include the second messenger cyclic AMP. However, the mechanisms underlying this cascade have been difficult to elucidate. We demonstrate that the A-kinase-anchoring protein AKAP-Lbc and the scaffolding protein kinase suppressor of Ras (KSR-1) form the core of a signalling network that efficiently relay signals from RAF, through MEK, and on to ERK1/2. AKAP-Lbc functions as an enhancer of ERK signalling by securing RAF in the vicinity of MEK1 and synchronizing protein kinase A (PKA)-mediated phosphorylation of Ser 838 on KSR-1. This offers mechanistic insight into cAMP-responsive control of ERK signalling events.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Camundongos , Antígenos de Histocompatibilidade Menor , Dados de Sequência Molecular , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Alinhamento de Sequência
4.
PLoS One ; 5(8): e12469, 2010 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-20814571

RESUMO

The cJun NH2-terminal kinase (JNK) signal transduction pathway has been implicated in mammary carcinogenesis. To test the role of JNK, we examined the effect of ablation of the Jnk1 and Jnk2 genes in a Trp53-dependent model of breast cancer using BALB/c mice. We detected no defects in mammary gland development in virgin mice or during lactation and involution in control studies of Jnk1(-/-) and Jnk2(-/-) mice. In a Trp53(-/+) genetic background, mammary carcinomas were detected in 43% of control mice, 70% of Jnk1(-/-) mice, and 53% of Jnk2(-/-) mice. These data indicate that JNK1 and JNK2 are not essential for mammary carcinoma development in the Trp53(-/+) BALB/c model of breast cancer. In contrast, this analysis suggests that JNK may partially contribute to tumor suppression. This conclusion is consistent with the finding that tumor-free survival of JNK-deficient Trp53(-/+) mice was significantly reduced compared with control Trp53(-/+) mice. We conclude that JNK1 and JNK2 can act as suppressors of mammary tumor development.


Assuntos
Neoplasias da Mama/enzimologia , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Feminino , Glândulas Mamárias Animais/enzimologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Proteína Quinase 8 Ativada por Mitógeno/deficiência , Proteína Quinase 9 Ativada por Mitógeno/deficiência , Análise de Sobrevida , Proteína Supressora de Tumor p53/deficiência
5.
Proc Natl Acad Sci U S A ; 105(49): 19264-9, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19033456

RESUMO

The activity of the ERK has complex spatial and temporal dynamics that are important for the specificity of downstream effects. However, current biochemical techniques do not allow for the measurement of ERK signaling with fine spatiotemporal resolution. We developed a genetically encoded, FRET-based sensor of ERK activity (the extracellular signal-regulated kinase activity reporter, EKAR), optimized for signal-to-noise ratio and fluorescence lifetime imaging. EKAR selectively and reversibly reported ERK activation in HEK293 cells after epidermal growth factor stimulation. EKAR signals were correlated with ERK phosphorylation, required ERK activity, and did not report the activities of JNK or p38. EKAR reported ERK activation in the dendrites and nucleus of hippocampal pyramidal neurons in brain slices after theta-burst stimuli or trains of back-propagating action potentials. EKAR therefore permits the measurement of spatiotemporal ERK signaling dynamics in living cells, including in neuronal compartments in intact tissues.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes , Sistema de Sinalização das MAP Quinases , Células Piramidais/enzimologia , Potenciais de Ação/fisiologia , Animais , Artefatos , Proteínas de Bactérias/genética , Linhagem Celular , Dendritos/enzimologia , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Humanos , Rim/citologia , Proteínas Luminescentes/genética , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Ratos
6.
Cancer Cell ; 11(2): 101-3, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17292820

RESUMO

It is established that p38 MAPK can negatively regulate tumorigenesis, but the mechanism is incompletely understood. A new study in this issue of Cancer Cell shows that p38 MAP kinase plays a selective role in tumor initiation mediated by oxidative stress.


Assuntos
Transformação Celular Neoplásica , Proteína Quinase 14 Ativada por Mitógeno/fisiologia , Neoplasias/enzimologia , Estresse Oxidativo , Animais , Apoptose , Humanos , Proteína Quinase 14 Ativada por Mitógeno/genética , Neoplasias/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...