Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
medRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38699312

RESUMO

As rehabilitation advances into the era of digital health, remote monitoring of physical activity via wearable devices has the potential to change how we provide care. However, uncertainties about patient adherence and the significant resource requirements needed create challenges to adoption of remote monitoring into clinical care. Here we aim to determine the impact of a novel digital application to overcome these barriers. The Rehabilitation Remote Monitoring Application (RRMA) automatically extracts data about physical activity collected via a Fitbit device, screens the data for adherence, and contacts the participant if adherence is low. We compare adherence and estimate the resources required (i.e., time and financial) to perform remote monitoring of physical activity with and without the RRMA in two patient groups. Seventy-three individuals with stroke or chronic obstructive pulmonary disease completed 28 days of monitoring physical activity with the RRMA, while 62 individuals completed 28 days with the data flow processes being completed manually. Adherence (i.e., the average percentage of the day that the device was worn) was similar between groups (p=0.85). However, the RRMA saved an estimated 123.8 minutes or $50.24 per participant month when compared to manual processes. These results demonstrate that automated technologies like the RRMA can maintain patient adherence to remote monitoring of physical activity while reducing the time and financial resources needed. Applications like the RRMA can facilitate the adoption of remote monitoring in rehabilitation by reducing barriers related to adherence and resource requirements.

2.
Sci Rep ; 13(1): 21394, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123594

RESUMO

The cerebellum has demonstrated a critical role during adaptation in motor learning. However, the extent to which it can contribute to the skill acquisition of complex real-world tasks remains unclear. One particularly challenging application in terms of motor activities is robotic surgery, which requires surgeons to complete complex multidimensional visuomotor tasks through a remotely operated robot. Given the need for high skill proficiency and the lack of haptic feedback, there is a pressing need for understanding and improving skill development. We investigated the effect of cerebellar transcranial direct current stimulation applied during the execution of a robotic surgery training task. Study participants received either real or sham stimulation while performing a needle driving task in a virtual (simulated) and a real-world (actual surgical robot) setting. We found that cerebellar stimulation significantly improved performance compared to sham stimulation at fast (more demanding) execution speeds in both virtual and real-world training settings. Furthermore, participants that received cerebellar stimulation more effectively transferred the skills they acquired during virtual training to the real world. Our findings underline the potential of non-invasive brain stimulation to enhance skill learning and transfer in real-world relevant tasks and, more broadly, its potential for improving complex motor learning.


Assuntos
Procedimentos Cirúrgicos Robóticos , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Destreza Motora/fisiologia , Aprendizagem/fisiologia , Cerebelo/fisiologia
3.
Brain Stimul ; 16(5): 1232-1239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37595834

RESUMO

Subcortical motor pathways, such as the reticulospinal tract, are critical for producing and modulating voluntary movements and have been implicated in neurological conditions. Previous research has described the presence of ipsilateral motor evoked potentials (iMEPs) in the arm to transcranial magentic stimulation (TMS), and suggested they could be mediated by the uncrossed corticospinal tract or by ipsilateral cortico-reticulospinal connections. Here, we sought to elucidate the role of the reticulospinal tract in mediating iMEPs by assessing their modulation by a startling acoustic stimulus and mapping these responses across multiple upper limb effectors. In a first experiment, we delivered TMS at various intervals (1, 5, 10 and 15 ms) after a startling acoustic stimulus, known to excite the reticular formation, to elicit iMEPs in the arm. We observed robust facilitation of iMEP area when startle conditioning preceded TMS at the 10 ms interval. In a second experiment, we replicated our findings showing that both the area and number of iMEPs in the arm increases with startle conditioning. Using this technique, we observed that iMEPs are more prominent in the arm compared with the hand. In a third experiment, we also observed greater presence of iMEPs in flexor compared with extensor muscles. Together, these findings are consistent with properties of the reticulospinal tract observed in animals, suggesting that iMEPs primarily reflect reticulospinal activity. Our findings imply that we can use this approach to track modulation of cortico-reticulospinal excitability following interventions or neurological conditions where the reticulospinal tract may be involved in motor recovery.


Assuntos
Músculo Esquelético , Tratos Piramidais , Humanos , Vias Eferentes , Tratos Piramidais/fisiologia , Músculo Esquelético/fisiologia , Mãos , Potencial Evocado Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Eletromiografia/métodos
4.
J Neurosci ; 43(17): 3094-3106, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36914263

RESUMO

Fatigue is the subjective sensation of weariness, increased sense of effort, or exhaustion and is pervasive in neurologic illnesses. Despite its prevalence, we have a limited understanding of the neurophysiological mechanisms underlying fatigue. The cerebellum, known for its role in motor control and learning, is also involved in perceptual processes. However, the role of the cerebellum in fatigue remains largely unexplored. We performed two experiments to examine whether cerebellar excitability is affected after a fatiguing task and its association with fatigue. Using a crossover design, we assessed cerebellar inhibition (CBI) and perception of fatigue in humans before and after "fatigue" and "control" tasks. Thirty-three participants (16 males, 17 females) performed five isometric pinch trials with their thumb and index finger at 80% maximum voluntary capacity (MVC) until failure (force <40% MVC; fatigue) or at 5% MVC for 30 s (control). We found that reduced CBI after the fatigue task correlated with a milder perception of fatigue. In a follow-up experiment, we investigated the behavioral consequences of reduced CBI after fatigue. We measured CBI, perception of fatigue, and performance during a ballistic goal-directed task before and after the same fatigue and control tasks. We replicated the observation that reduced CBI after the fatigue task correlated with a milder perception of fatigue and found that greater endpoint variability after the fatigue task correlated with reduced CBI. The proportional relation between cerebellar excitability and fatigue indicates a role of the cerebellum in the perception of fatigue, which might come at the expense of motor control.SIGNIFICANCE STATEMENT Fatigue is one of the most common and debilitating symptoms in neurologic, neuropsychiatric, and chronic illnesses. Despite its epidemiological importance, there is a limited understanding of the neurophysiological mechanisms underlying fatigue. In a series of experiments, we demonstrate that decreased cerebellar excitability relates to lesser physical fatigue perception and worse motor control. These results showcase the role of the cerebellum in fatigue regulation and suggest that fatigue- and performance-related processes might compete for cerebellar resources.


Assuntos
Cerebelo , Aprendizagem , Feminino , Humanos , Masculino , Cerebelo/fisiologia , Eletromiografia/métodos , Inibição Psicológica , Aprendizagem/fisiologia , Percepção , Estimulação Magnética Transcraniana/métodos , Estudos Cross-Over
6.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747674

RESUMO

Background: Neurorehabilitation approaches are frequently predicated on motor learning principles. However, much is left to be understood of how different kinds of motor learning are affected by stroke causing hemiparesis. Here we asked if two kinds of motor learning often employed in rehabilitation, (1) reinforcement learning and (2) error-based adaptation, are altered at different times after stroke. Methods: In a cross-sectional design, we compared learning in two groups of patients with stroke, matched for their baseline motor execution deficit on the paretic side. The early group was tested within 3 months following stroke (N = 35) and the late group was tested more than 6 months after stroke (N = 30). Two types of task were studied: one based on reinforcement learning and the other on error-based learning. Results: We found that reinforcement learning was impaired in the early but not the late group, whereas error-based learning was unaffected compared to controls. These findings could not be attributed to differences in baseline execution, cognitive impairment, gender, age, or lesion volume and location. Conclusions: The presence of a specific impairment in reinforcement learning in the first 3 months after stroke has important implications for rehabilitation. It might be necessary to either increase the amount of reinforcement feedback given early or even delay onset of certain forms of rehabilitation training, e.g., like constraint-induced movement therapy, and instead emphasize others forms of motor learning in this early time period. A deeper understanding of stroke-related changes in motor learning capacity has the potential to facilitate the development of new, more precise treatment interventions.

7.
Am J Phys Med Rehabil ; 102(2): 159-165, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634238

RESUMO

ABSTRACT: Environmental scans determine trends in an organization's or field's internal and external environment. The results can help shape goals, inform strategic decision making, and direct future actions. The Association of Academic Physiatrists convened a strategic planning group in 2020, composed of physiatrists representing a diversity of professional roles, career stages, race and ethnicity, gender, disability status, and geographic areas of practice. This strategic planning group performed an environmental scan to assess the forces, trends, challenges, and opportunities affecting both the Association of Academic Physiatrists and the entire field of academic physiatry (also known as physical medicine and rehabilitation, physical and rehabilitation medicine, and rehabilitation medicine). This article presents aspects of the environmental scan thought to be most pertinent to the field of academic physiatry organized within the following five themes: (1) Macro/Societal Trends, (2) Technological Advancements, (3) Diversity and Global Outreach, (4) Economy, and (5) Education/Learning Environment. The challenges and opportunities presented here can provide a roadmap for the field to thrive within the complex and evolving healthcare systems in the United States and globally.


Assuntos
Internato e Residência , Medicina , Medicina Física e Reabilitação , Humanos , Estados Unidos , Educação de Pós-Graduação em Medicina , Atenção à Saúde
9.
Am J Phys Med Rehabil ; 102(2S Suppl 1): S79-S84, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634336

RESUMO

ABSTRACT: Motor, speech, and cognitive impairments are the most common consequences of neurological disorders. There has been an increasing interest in the use of noninvasive brain stimulation techniques such as transcranial direct current stimulation and transcranial magnetic stimulation to augment the effects of neurorehabilitation. Numerous research studies have shown that transcranial direct current stimulation and transcranial magnetic stimulation are highly promising neuromodulation tools that can work as adjuvants to standard neurorehabilitation services, including physical therapy, occupational therapy, and speech-language pathology. However, to date, there are vast differences in methodology in studies including noninvasive brain stimulation parameters, patient characteristics, time point of intervention after injury, and outcome measures, making it difficult to translate and implement transcranial direct current stimulation and transcranial magnetic stimulation in the clinical setting. Despite this, a series of principles are thought to underlie the effectiveness of noninvasive brain stimulation techniques. We developed a noninvasive brain stimulation rehabilitation program using these principles to provide best practices for applying transcranial direct current stimulation and/or transcranial magnetic stimulation as rehabilitation adjuvants in the clinical setting to help improve neurorehabilitation outcomes. This article outlines our approach, philosophy, and experience.


Assuntos
Reabilitação Neurológica , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Pacientes Ambulatoriais , Estimulação Magnética Transcraniana/métodos , Encéfalo
10.
Neurobiol Aging ; 118: 9-12, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35810524

RESUMO

Effective connectivity between the cerebellum and primary motor cortex (M1) is critical for motor learning and motor control. Despite evidence of cerebellar atrophy and declines in motor learning and motor control with advanced age, recent behavioral studies indicate that cerebellar-dependent motor learning processes are preserved or even enhanced in older adults. However, physiological evidence of heightened cerebellar excitability leading to strengthened cerebellar-M1 connectivity with advanced age is lacking. Here, we used transcranial magnetic stimulation to assess age-related effects on cerebellar inhibition, a measure of cerebellar-M1 connectivity, in 20 young and 19 older adults. We observed stronger cerebellar inhibition in older compared with young adults. The behavioral implications of strengthened cerebellar inhibition with advanced age found in this study remain to be determined.


Assuntos
Córtex Motor , Idoso , Cerebelo/fisiologia , Potencial Evocado Motor/fisiologia , Humanos , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana
11.
Front Neurorobot ; 16: 918001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837250

RESUMO

Advances in intelligent robotic systems and brain-machine interfaces (BMI) have helped restore functionality and independence to individuals living with sensorimotor deficits; however, tasks requiring bimanual coordination and fine manipulation continue to remain unsolved given the technical complexity of controlling multiple degrees of freedom (DOF) across multiple limbs in a coordinated way through a user input. To address this challenge, we implemented a collaborative shared control strategy to manipulate and coordinate two Modular Prosthetic Limbs (MPL) for performing a bimanual self-feeding task. A human participant with microelectrode arrays in sensorimotor brain regions provided commands to both MPLs to perform the self-feeding task, which included bimanual cutting. Motor commands were decoded from bilateral neural signals to control up to two DOFs on each MPL at a time. The shared control strategy enabled the participant to map his four-DOF control inputs, two per hand, to as many as 12 DOFs for specifying robot end effector position and orientation. Using neurally-driven shared control, the participant successfully and simultaneously controlled movements of both robotic limbs to cut and eat food in a complex bimanual self-feeding task. This demonstration of bimanual robotic system control via a BMI in collaboration with intelligent robot behavior has major implications for restoring complex movement behaviors for those living with sensorimotor deficits.

12.
Sci Rep ; 12(1): 10353, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725741

RESUMO

Understanding the cortical representations of movements and their stability can shed light on improved brain-machine interface (BMI) approaches to decode these representations without frequent recalibration. Here, we characterize the spatial organization (somatotopy) and stability of the bilateral sensorimotor map of forearm muscles in an incomplete-high spinal-cord injury study participant implanted bilaterally in the primary motor and sensory cortices with Utah microelectrode arrays (MEAs). We built representation maps by recording bilateral multiunit activity (MUA) and surface electromyography (EMG) as the participant executed voluntary contractions of the extensor carpi radialis (ECR), and attempted motions in the flexor carpi radialis (FCR), which was paralytic. To assess stability, we repeatedly mapped and compared left- and right-wrist-extensor-related activity throughout several sessions, comparing somatotopy of active electrodes, as well as neural signals both at the within-electrode (multiunit) and cross-electrode (network) levels. Wrist motions showed significant activation in motor and sensory cortical electrodes. Within electrodes, firing strength stability diminished as the time increased between consecutive measurements (hours within a session, or days across sessions), with higher stability observed in sensory cortex than in motor, and in the contralateral hemisphere than in the ipsilateral. However, we observed no differences at network level, and no evidence of decoding instabilities for wrist EMG, either across timespans of hours or days, or across recording area. While map stability differs between brain area and hemisphere at multiunit/electrode level, these differences are nullified at ensemble level.


Assuntos
Antebraço , Músculo Esquelético , Eletromiografia , Antebraço/fisiologia , Humanos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Quadriplegia
13.
Brain Stimul ; 15(3): 881-888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35644516

RESUMO

BACKGROUND: Intracortical microstimulation (ICMS) of somatosensory cortex can partially restore the sense of touch. Though ICMS bypasses much of the neuraxis, prior studies have found that conscious detection of touch elicited by ICMS lags behind the detection of cutaneous vibration. These findings may have been influenced by mismatched stimulus intensities, which can impact temporal perception. OBJECTIVE: Evaluate the relative latency at which intensity-matched vibration and ICMS are perceived by a human participant. METHODS: One person implanted with microelectrode arrays in somatosensory cortex performed reaction time and temporal order judgment (TOJ) tasks. To measure reaction time, the participant reported when he perceived vibration or ICMS. In the TOJ task, vibration and ICMS were sequentially presented and the participant reported which stimulus occurred first. To verify that the participant could distinguish between stimuli, he also performed a modality discrimination task, in which he indicated if he felt vibration, ICMS, or both. RESULTS: When vibration was matched in perceived intensity to high-amplitude ICMS, vibration was perceived, on average, 48 ms faster than ICMS. However, in the TOJ task, both sensations arose at comparable latencies, with points of subjective simultaneity not significantly different from zero. The participant could discriminate between tactile modalities above chance level but was more inclined to report feeling vibration than ICMS. CONCLUSIONS: The latencies of ICMS-evoked percepts are slower than their mechanical counterparts. However, differences in latencies are small, particularly when stimuli are matched for intensity, implying that ICMS-based somatosensory feedback is rapid enough to be effective in neuroprosthetic applications.


Assuntos
Córtex Somatossensorial , Vibração , Estimulação Elétrica , Humanos , Masculino , Microeletrodos , Córtex Somatossensorial/fisiologia , Tato/fisiologia
14.
J Neurophysiol ; 127(4): 856-868, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108107

RESUMO

Most patients with stroke experience motor deficits, usually referred to collectively as hemiparesis. Although hemiparesis is one of the most common and clinically recognizable motor abnormalities, it remains undercharacterized in terms of its behavioral subcomponents and their interactions. Hemiparesis comprises both negative and positive motor signs. Negative signs consist of weakness and loss of motor control (dexterity), whereas positive signs consist of spasticity, abnormal resting posture, and intrusive movement synergies (abnormal muscle co-activations during voluntary movement). How positive and negative signs interact, and whether a common mechanism generates them, remains poorly understood. Here, we used a planar, arm-supported reaching task to assess poststroke arm dexterity loss, which we compared with the Fugl-Meyer stroke scale; a measure primarily reflecting abnormal synergies. We examined 53 patients with hemiparesis after a first-time ischemic stroke. Reaching kinematics were markedly more impaired in patients with subacute (<3 mo) compared to chronic (>6 mo) stroke even for similar Fugl-Meyer scores. This suggests a dissociation between abnormal synergies (reflected in the Fugl-Meyer scale) and loss of dexterity, which in turn suggests different underlying mechanisms. Moreover, dynamometry suggested that Fugl-Meyer scores capture weakness as well as abnormal synergies, in line with these two deficits sharing a neural substrate. These findings have two important implications: First, clinical studies that test for efficacy of rehabilitation interventions should specify which component of hemiparesis they are targeting and how they propose to measure it. Metrics used widely for this purpose may not always be chosen appropriately. For example, as we show here, the Fugl-Meyer score may capture some hemiparesis components (abnormal synergies and weakness) but not others (loss of dexterity). Second, there may be an opportunity to design rehabilitation interventions to address specific subcomponents of hemiparesis.NEW & NOTEWORTHY Motor impairment is common after stroke and comprises reduced dexterity, weakness, and abnormal muscle synergies. Here we report that, when matched on an established synergy and weakness scale (Fugl-Meyer), patients with subacute stroke have worse reaching dexterity than chronic ones. This result suggests that the components of hemiparesis are dissociable and have separable mechanisms and, thus, may require distinct assessments and treatments.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Fenômenos Biomecânicos , Humanos , Espasticidade Muscular , Paresia/etiologia , Paresia/reabilitação , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia
15.
Cerebellum ; 21(6): 1092-1122, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34813040

RESUMO

The cerebellum is involved in multiple closed-loops circuitry which connect the cerebellar modules with the motor cortex, prefrontal, temporal, and parietal cortical areas, and contribute to motor control, cognitive processes, emotional processing, and behavior. Among them, the cerebello-thalamo-cortical pathway represents the anatomical substratum of cerebellum-motor cortex inhibition (CBI). However, the cerebellum is also connected with basal ganglia by disynaptic pathways, and cerebellar involvement in disorders commonly associated with basal ganglia dysfunction (e.g., Parkinson's disease and dystonia) has been suggested. Lately, cerebellar activity has been targeted by non-invasive brain stimulation (NIBS) techniques including transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to indirectly affect and tune dysfunctional circuitry in the brain. Although the results are promising, several questions remain still unsolved. Here, a panel of experts from different specialties (neurophysiology, neurology, neurosurgery, neuropsychology) reviews the current results on cerebellar NIBS with the aim to derive the future steps and directions needed. We discuss the effects of TMS in the field of cerebellar neurophysiology, the potentials of cerebellar tDCS, the role of animal models in cerebellar NIBS applications, and the possible application of cerebellar NIBS in motor learning, stroke recovery, speech and language functions, neuropsychiatric and movement disorders.


Assuntos
Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Animais , Estimulação Transcraniana por Corrente Contínua/métodos , Consenso , Cerebelo/fisiologia , Estimulação Magnética Transcraniana/métodos
16.
Neurology ; 98(7): e679-e687, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34880087

RESUMO

BACKGROUND AND OBJECTIVES: The restoration of touch to fingers and fingertips is critical to achieving dexterous neuroprosthetic control for individuals with sensorimotor dysfunction. However, localized fingertip sensations have not been evoked via intracortical microstimulation (ICMS). METHODS: Using a novel intraoperative mapping approach, we implanted electrode arrays in the finger areas of left and right somatosensory cortex and delivered ICMS over a 2-year period in a human participant with spinal cord injury. RESULTS: Stimulation evoked tactile sensations in 8 fingers, including fingertips, spanning both hands. Evoked percepts followed expected somatotopic arrangements. The subject was able to reliably identify up to 7 finger-specific sites spanning both hands in a finger discrimination task. The size of the evoked percepts was on average 33% larger than a finger pad, as assessed via manual markings of a hand image. The size of the evoked percepts increased modestly with increased stimulation intensity, growing 21% as pulse amplitude increased from 20 to 80 µA. Detection thresholds were estimated on a subset of electrodes, with estimates of 9.2 to 35 µA observed, roughly consistent with prior studies. DISCUSSION: These results suggest that ICMS can enable the delivery of consistent and localized fingertip sensations during object manipulation by neuroprostheses for individuals with somatosensory deficits. CLINICALTRIALSGOV IDENTIFIER: NCT03161067.


Assuntos
Córtex Somatossensorial , Traumatismos da Medula Espinal , Estimulação Elétrica/métodos , Mãos , Humanos , Tato
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6259-6262, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892544

RESUMO

Advances in brain-machine interfaces have helped restore function and independence for individuals with sensorimotor deficits; however, providing efficient and effective sensory feedback remains challenging. Intracortical microstimulation (ICMS) of sensorimotor brain regions is a promising technique for providing bioinspired sensory feedback. In a human participant with chronically-implanted microelectrode arrays, we provided ICMS to the primary somatosensory cortex to generate tactile percepts in his hand. In a 3-choice object identification task, the participant identified virtual objects using tactile sensory feedback and no visual information. We evaluated three different stimulation paradigms, each with a different weighting of the grip force and its derivative, to explore the potential benefits of a more bioinspired stimulation strategy. In all paradigms, the participant's ability to identify the objects was above-chance, with object identification accuracy reaching 80% correct when using only sustained grip force feedback and 76.7% when using equal weighting of both sustained grip force and its derivative. These results demonstrate that bioinspired ICMS can provide sensory feedback that is functionally beneficial in sensorimotor tasks. Designing more efficient stimulation paradigms is important because it will allow us to 1) provide safer stimulation delivery methods that reduce overall injected charge without sacrificing function and 2) more effectively transmit sensory information to promote intuitive integration and usage by the human body.


Assuntos
Mãos , Córtex Somatossensorial , Estimulação Elétrica , Humanos , Microeletrodos , Tato
18.
Cortex ; 143: 47-56, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375797

RESUMO

Learning similar motor skills in close succession is limited by interference, a phenomenon that takes place early after acquisition when motor memories are unstable. Interference can be bidirectional, as the first memory can be disrupted by the second (retrograde interference), or the second memory can be disrupted by the first (anterograde interference). The heightened plastic state of primary motor cortex after learning is thought to underlie interference, as unstable motor memories compete for neural resources. While time-dependent consolidation processes reduce interference, the passage of time (~6 h) required for memory stabilization limits our capacity to learn multiple motor skills at once. Here, we demonstrate in humans that prolonged training at asymptote of an initial motor skill reduces both retrograde and anterograde interference when a second motor skill is acquired in close succession. Neurophysiological assessments via transcranial magnetic stimulation reflect this online stabilization process. Specifically, excitatory neurotransmission in primary motor cortex increased after short training and decreased after prolonged training at performance asymptote. Of note, this reduction in intracortical excitation after prolonged training was proportional to better skill retention the following day. Importantly, these neurophysiological effects were not observed after motor practice without learning or after a temporal delay. Together, these findings indicate that prolonged training at asymptote improves the capacity to learn multiple motor skills in close succession, and that downregulation of excitatory neurotransmission in primary motor cortex may be a marker of online motor memory stabilization.


Assuntos
Córtex Motor , Humanos , Aprendizagem , Destreza Motora , Estimulação Magnética Transcraniana
19.
Clin Neurophysiol ; 132(10): 2365-2370, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34454263

RESUMO

OBJECTIVE: Connectivity between the cerebellum and primary motor cortex (M1) can be assessed by using transcranial magnetic stimulation to measure cerebellar brain inhibition (CBI). The aim of the present study was to determine the intra- and inter-day measurment error and relative reliability of CBI. The former informs the degree to which repeated measurements vary, whereas the latter informs how well the measure can distinguish individuals from one another within a sample. METHODS: We obtained CBI data from 83 healthy young participants (n = 55 retrospective). Intra-day measurements were separated by ~ 30 min. Inter-day measurmenets were separated by a minimum of 24 h. RESULTS: We show that CBI has low measurement error (~15%) within and between sessions. Using the measurment error, we demonstrate that change estimates which exceed measurment noise are large at an individual level, but can be detected with modest sample sizes. Finally, we demonstrate that the CBI measurement has fair to good relative reliability in healthy individuals, which may be deflated by low sample heterogeneity. CONCLUSIONS: CBI has low measurement error supporting its use for tracking intra- and inter-day changes in cerebellar-M1 connectivity. SIGNIFICANCE: Our findings provide clear reliability guidelines for future studies assessing modulation of cerebellar-M1 connectivity with intervention or disease progression.


Assuntos
Cerebelo/fisiologia , Eletromiografia/normas , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana/normas , Adolescente , Adulto , Estudos de Coortes , Eletromiografia/métodos , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Estudos Retrospectivos , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
20.
J Neurosurg ; : 1-8, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33770760

RESUMO

Defining eloquent cortex intraoperatively, traditionally performed by neurosurgeons to preserve patient function, can now help target electrode implantation for restoring function. Brain-machine interfaces (BMIs) have the potential to restore upper-limb motor control to paralyzed patients but require accurate placement of recording and stimulating electrodes to enable functional control of a prosthetic limb. Beyond motor decoding from recording arrays, precise placement of stimulating electrodes in cortical areas associated with finger and fingertip sensations allows for the delivery of sensory feedback that could improve dexterous control of prosthetic hands. In this study, the authors demonstrated the use of a novel intraoperative online functional mapping (OFM) technique with high-density electrocorticography to localize finger representations in human primary somatosensory cortex. In conjunction with traditional pre- and intraoperative targeting approaches, this technique enabled accurate implantation of stimulating microelectrodes, which was confirmed by postimplantation intracortical stimulation of finger and fingertip sensations. This work demonstrates the utility of intraoperative OFM and will inform future studies of closed-loop BMIs in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...