Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 262(5135): 877-80, 1993 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-17757354

RESUMO

The ability to fabricate nanometer-sized structures that are stable in air has the potential to contribute significantly to the advancement of new nanotechnologies and our understanding of nanoscale systems. Laser light can be used to control the motion of atoms on a nanoscopic scale. Chromium atoms were focused by a standing-wave laser field as they deposited onto a silicon substrate. The resulting nanostructure consisted of a series of narrow lines covering 0.4 millimeter by 1 millimeter. Atomic force microscopy measurements showed a line width of 65 +/- 6 nanometers, a spacing of 212.78 nanometers, and a height of 34 +/-+ 10 nanometers. The observed line widths and shapes are compared with the predictions of a semiclassical atom optical model.

2.
Science ; 251(4998): 1206-10, 1991 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17799280

RESUMO

A general method of manipulating adsorbed atoms and molecules on room-temperature surfaces with the use of a scanning tunneling microscope is described. By applying an appropriate voltage pulse between the sample and probe tip, adsorbed atoms can be induced to diffuse into the region beneath the tip. The field-induced diffusion occurs preferentially toward the tip during the voltage pulse because of the local potential energy gradient arising from the interaction of the adsorbate dipole moment with the electric field gradient at the surface. Depending upon the surface and pulse parameters, cesium (Cs) structures from one nanometer to a few tens of nanometers across have been created in this way on the (110) surfaces of gallium arsenide (GaAs) and indium antimonide (InSb), including structures that do not naturally occur.

3.
Science ; 234(4774): 333-40, 1986 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-17834531

RESUMO

The magnetic properties of surfaces are now being explored with electron spectroscopies that use electron spin polarization techniques. The increased activity in surface magnetic measurements with polarized electron beams is spurred by new scientific and technological challenges and is made feasible by recent advances in the technology of sources and detectors of polarized electrons. The ability to grow thin films and to engineer artificial structures permits new phenomena to be investigated at magnetic surfaces and interfaces. For such investigations, spin-polarized electron techniques-such as polarized electron scattering, polarized photoemission, polarized Auger spectroscopy, and scanning electron microscopy with polarization analysis-have been and will probably continue to be used to great advantage.

4.
Opt Lett ; 11(9): 560-2, 1986 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19738688

RESUMO

The technique of scanning tunneling microscopy has been applied to topographic mapping of two optical surfaces: a ruled grating replica and a diamond-turned gold mirror. We have demonstrated the ability of the scanning tunneling microscope to measure surface topography of a ruled-grating replica over an area of 2 microm x 2 microm. Furthermore, surface structure on a diamond-turned gold mirror was observed that could not be detected by any other type of surface-sensitive microscope. These measurements yield information necessary for gaining a complete understanding of the diamond-turning process.

5.
Rev Sci Instrum ; 50(11): 1467, 1979 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18699413

RESUMO

New scientific opportunities, particularly for investigation of surface magnetism, will be provided by spin and energy analyzed photoemission. Electron-optical conservation laws and phase space concepts are summarized and applied to determine the feasiblity of an experiment consisting of a photoemitter in a magnetic field, a photoelectron energy analyzer and an electron spin analyzer. For the example of photoemission from a Ni crystal using He I resonance radiation and typical parameters for the energy and spin analyzers, a final signal count rate of approximately 220 counts/s is calculated. Ways to increase the count rate by orders of magnitude are described. In particular, a new experimental configuration is suggested which may avoid the large reduction in count rate caused by the magnetic field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...