Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 149: 168-76, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26855221

RESUMO

Tyre pyrolysis char (TPC), produced when manufacturing pyrolysis oil from waste tyre, was used as raw material to prepare activated carbons (ACs) by KOH activation. KOH to TPC weight ratios (W) between 0.5 and 6, and activation temperatures from 600 to 800 °C, were used. An increase in W resulted in a more efficient development of surface area, microporosity and mesoporosity. Thus, ACs derived from TPC (TPC-ACs) with specific surface areas up to 814 m(2) g(-1) were obtained. TPC, TPC-ACs and a commercial AC (CAC) were tested for removing Tetracycline (TC) in aqueous phase, and systematic adsorption studies, including equilibrium, kinetics and thermodynamic aspects, were performed. Kinetics was well described by the pseudo-first order model for TPC, and by a pseudo second-order kinetic model for ACs. TC adsorption equilibrium data were also fitted by different isotherm models: Langmuir, Freundlich, Sips, Dubinin-Radushkevich, Dubinin-Astokov, Temkin, Redlich-Peterson, Radke-Prausnitz and Toth. The thermodynamic study confirmed that TC adsorption onto TPC-ACs is a spontaneous process. TC adsorption data obtained in the present study were compared with those reported in the literature, and differences were explained in terms of textural properties and surface functionalities. TPC-ACs had similar performances to those of commercial ACs, and might significantly improve the economic balance of the production of pyrolysis oil from waste tyres.


Assuntos
Carvão Vegetal/química , Hidróxidos/química , Compostos de Potássio/química , Tetraciclina/análise , Poluentes Químicos da Água/análise , Adsorção , Carbono , Cinética , Temperatura , Tetraciclina/química , Poluentes Químicos da Água/química
2.
J Hazard Mater ; 168(1): 430-7, 2009 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-19349116

RESUMO

Ferric chloride forced hydrolysis is shown to be a good method for increasing the iron content of activated carbons (ACs). Iron content increased linearly with hydrolysis time, and ACs with iron content as high as 9.4wt.% at 24h hydrolysis time could be prepared. The increase in iron content did not produce any modification in the textural parameters determined by nitrogen adsorption at 77K. Iron-based nanoparticles, homogeneous in size and well-dispersed in the carbon matrix, were obtained. Nanoparticles forming iron (hydr)oxide agglomerates at the outer surface of the carbon grains at hydrolysis times higher than 6h were also produced. The AC obtained after 6h of ferric chloride forced hydrolysis removed 94% of the arsenic present in a groundwater from the State of Chihuahua (Mexico), whereas the commercial AC used as precursor allowed the removal of only 14%. The lower performance in arsenic removal observed for AC prepared using long forced hydrolysis time (24h) is probably due to the existence of iron (hydr)oxides nanoparticles agglomerates, which once hydrated could prevent diffusion of arsenate (HAsO(4)(-)) towards the inner surface of the AC grain.


Assuntos
Arsênio/isolamento & purificação , Carvão Vegetal/química , Compostos Férricos/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Cloretos , Água Doce , Hidrólise , Ferro , México
3.
J Hazard Mater ; 165(1-3): 893-902, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19135299

RESUMO

Arsenic removal from natural well water from the state of Chihuahua (Mexico) is investigated by adsorption using a commercial activated carbon (AC). The latter is used as such, or after oxidation by several chemicals in aqueous solution: nitric acid, hydrogen peroxide, and ammonium persulphate. Raw and oxidised activated carbons are fully characterised (elementary analysis, surface chemistry, pore texture parameters, pH(ZC), and TEM observation). Adsorption of As is measured in the aforementioned water, containing ca. 300 ppb of arsenic: removal of As is poor with the raw AC, and only the most oxidised carbons exhibit higher performances. By contrast, iron-doped ACs are much more efficient for that purpose, though their As uptake strongly depends on their preparation conditions: a number of samples were synthesised by impregnation of raw and oxidised ACs with HCl aqueous solutions of either FeCl(3) or FeCl(2) at various concentrations and various pH. It is shown that iron(II) chloride is better for obtaining high iron contents in the resultant ACs (up to 8.34 wt.%), leading to high As uptake, close to 0.036 mg As/g C. In these conditions, 100% of the As initially present in the natural well water is removed, as soon as the Fe content of the adsorbent is higher than 2 wt.%.


Assuntos
Arsênio/isolamento & purificação , Carvão Vegetal/química , Ferro/química , Poluentes Químicos da Água/isolamento & purificação , Abastecimento de Água/análise , Adsorção , Compostos Férricos/química , Compostos Ferrosos/química , Água Doce , México , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA