Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(1-1): 014113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366405

RESUMO

The statistical properties of turbulent flows are fundamentally different from those of systems at equilibrium due to the presence of an energy flux from the scales of injection to those where energy is dissipated by the viscous forces: a scenario dubbed "direct energy cascade." From a statistical mechanics point of view, the cascade picture prevents the existence of detailed balance, which holds at equilibrium, e.g., in the inviscid and unforced case. Here, we aim at characterizing the nonequilibrium properties of turbulent cascades in a shell model of turbulence by studying an asymmetric time-correlation function and the relaxation behavior of an energy perturbation, measured at scales smaller or larger than the perturbed one. We contrast the behavior of these two observables in both nonequilibrium (forced and dissipated) and equilibrium (inviscid and unforced) cases. Finally, we show that equilibrium and nonequilibrium physics coexist in the same system, namely, at scales larger and smaller, respectively, of the forcing scale.

2.
Eur Phys J E Soft Matter ; 46(3): 9, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867296

RESUMO

We consider the problem of two active particles in 2D complex flows with the multi-objective goals of minimizing both the dispersion rate and the control activation cost of the pair. We approach the problem by means of multi-objective reinforcement learning (MORL), combining scalarization techniques together with a Q-learning algorithm, for Lagrangian drifters that have variable swimming velocity. We show that MORL is able to find a set of trade-off solutions forming an optimal Pareto frontier. As a benchmark, we show that a set of heuristic strategies are dominated by the MORL solutions. We consider the situation in which the agents cannot update their control variables continuously, but only after a discrete (decision) time, [Formula: see text]. We show that there is a range of decision times, in between the Lyapunov time and the continuous updating limit, where reinforcement learning finds strategies that significantly improve over heuristics. In particular, we discuss how large decision times require enhanced knowledge of the flow, whereas for smaller [Formula: see text] all a priori heuristic strategies become Pareto optimal.

3.
Phys Rev E ; 102(5-1): 052203, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327059

RESUMO

Understanding and modeling the dynamics of multiscale systems is a problem of considerable interest both for theory and applications. For unavoidable practical reasons, in multiscale systems, there is the need to eliminate from the description the fast and small-scale degrees of freedom and thus build effective models for only the slow and large-scale degrees of freedom. When there is a wide scale separation between the degrees of freedom, asymptotic techniques, such as the adiabatic approximation, can be used for devising such effective models, while away from this limit there exist no systematic techniques. Here, we scrutinize the use of machine learning, based on reservoir computing, to build data-driven effective models of multiscale chaotic systems. We show that, for a wide scale separation, machine learning generates effective models akin to those obtained using multiscale asymptotic techniques and, remarkably, remains effective in predictability also when the scale separation is reduced. We also show that predictability can be improved by hybridizing the reservoir with an imperfect model.

4.
Phys Rev E ; 102(1-1): 012402, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32794953

RESUMO

Finding the source of an odor dispersed by a turbulent flow is a vital task for many organisms. When many individuals concurrently perform the same olfactory search task, sharing information about other members' decisions can potentially boost the performance. But how much of this information is actually exploitable for the collective task? Here we show, in a model of a swarm of agents inspired by moth behavior, that there is an optimal way to blend the private information about odor and wind detections with the public information about other agents' heading direction. Our results suggest an efficient multiagent olfactory search algorithm that could prove useful in robotics, e.g., in the identification of sources of harmful volatile compounds.

5.
Eur Phys J E Soft Matter ; 42(3): 31, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30879226

RESUMO

Gyrotactic algae are bottom heavy, motile cells whose swimming direction is determined by a balance between a buoyancy torque directing them upwards and fluid velocity gradients. Gyrotaxis has, in recent years, become a paradigmatic model for phytoplankton motility in flows. The essential attractiveness of this peculiar form of motility is the availability of a mechanistic description which, despite its simplicity, revealed predictive, rich in phenomenology, easily complemented to include the effects of shape, feedback on the fluid and stochasticity (e.g., in cell orientation). In this review we consider recent theoretical, numerical and experimental results to discuss how, depending on flow properties, gyrotaxis can produce inhomogeneous phytoplankton distributions on a wide range of scales, from millimeters to kilometers, in both laminar and turbulent flows. In particular, we focus on the phenomenon of gyrotactic trapping in nonlinear shear flows and in fractal clustering in turbulent flows. We shall demonstrate the usefulness of ideas and tools borrowed from dynamical systems theory in explaining and interpreting these phenomena.


Assuntos
Modelos Biológicos , Fitoplâncton/fisiologia , Fenômenos Biomecânicos , Movimento Celular , Hidrodinâmica , Movimento , Fenômenos Físicos , Fitoplâncton/citologia , Reologia , Análise de Sistemas
6.
Phys Rev E ; 99(1-1): 012404, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30780351

RESUMO

Standard reaction-diffusion systems are characterized by infinite velocities and no persistence in the movement of individuals, two conditions that are violated when considering living organisms. Here we consider a discrete particle model in which individuals move following a persistent random walk with finite speed and grow with logistic dynamics. We show that, when the number of individuals is very large, the individual-based model is well described by the continuous reactive Cattaneo equation (RCE), but for smaller values of the carrying capacity important finite-population effects arise. The effects of fluctuations on the propagation speed are investigated both considering the RCE with a cutoff in the reaction term and by means of numerical simulations of the individual-based model. Finally, a more general Lévy walk process for the transport of individuals is examined and an expression for the front speed of the resulting traveling wave is proposed.

7.
Phys Rev E ; 98(1-1): 012202, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30110846

RESUMO

Understanding under what conditions it is possible to construct equivalent ensembles is key to advancing our ability to connect microscopic and macroscopic properties of nonequilibrium statistical mechanics. In the case of fluid dynamical systems, one issue is to test whether different models for viscosity lead to the same macroscopic properties of the fluid systems in different regimes. Such models include, besides the standard choice of constant viscosity, cases where the time symmetry of the evolution equations is exactly preserved, as it must be in the corresponding microscopic systems, when available. Here a time-reversible dynamics is obtained by imposing the conservation of global observables. We test the equivalence of reversible and irreversible ensembles for the case of a multiscale shell model of turbulence. We verify that the equivalence is obeyed for the mean values of macroscopic observables, up to an error that vanishes as the system becomes more and more chaotic.

8.
Eur Phys J E Soft Matter ; 41(7): 84, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29987441

RESUMO

We study the mixing of a passive scalar field dispersed in a solution of rodlike polymers in two dimensions, by means of numerical simulations of a rheological model for the polymer solution. The flow is driven by a parallel sinusoidal force (Kolmogorov flow). Although the Reynolds number is lower than the critical value for inertial instabilities, the rotational dynamics of the polymers generates a chaotic flow similar to the so-called elastic-turbulence regime observed in extensible polymer solutions. The temporal decay of the variance of the scalar field and its gradients shows that this chaotic flow strongly enhances mixing.

9.
Eur Phys J E Soft Matter ; 41(4): 48, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29619671

RESUMO

Turbulent flows governed by the Navier-Stokes equations (NSE) generate an out-of-equilibrium time irreversible energy cascade from large to small scales. In the NSE, the energy transfer is due to the nonlinear terms that are formally symmetric under time reversal. As for the dissipative term: first, it explicitly breaks time reversibility; second, it produces a small-scale sink for the energy transfer that remains effective even in the limit of vanishing viscosity. As a result, it is not clear how to disentangle the time irreversibility originating from the non-equilibrium energy cascade from the explicit time-reversal symmetry breaking due to the viscous term. To this aim, in this paper we investigate the properties of the energy transfer in turbulent shell models by using a reversible viscous mechanism, avoiding any explicit breaking of the [Formula: see text] symmetry. We probe time irreversibility by studying the statistics of Lagrangian power, which is found to be asymmetric under time reversal also in the time-reversible model. This suggests that the turbulent dynamics converges to a strange attractor where time reversibility is spontaneously broken and whose properties are robust for what concerns purely inertial degrees of freedoms, as verified by the anomalous scaling behavior of the velocity structure functions.

10.
Entropy (Basel) ; 20(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33265894

RESUMO

The goal of Science is to understand phenomena and systems in order to predict their development and gain control over them. In the scientific process of knowledge elaboration, a crucial role is played by models which, in the language of quantitative sciences, mean abstract mathematical or algorithmical representations. This short review discusses a few key examples from Physics, taken from dynamical systems theory, biophysics, and statistical mechanics, representing three paradigmatic procedures to build models and predictions from available data. In the case of dynamical systems we show how predictions can be obtained in a virtually model-free framework using the methods of analogues, and we briefly discuss other approaches based on machine learning methods. In cases where the complexity of systems is challenging, like in biophysics, we stress the necessity to include part of the empirical knowledge in the models to gain the minimal amount of realism. Finally, we consider many body systems where many (temporal or spatial) scales are at play-and show how to derive from data a dimensional reduction in terms of a Langevin dynamics for their slow components.

11.
Nucleic Acids Res ; 46(2): 558-567, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29216364

RESUMO

Transcription factors (TFs) are able to associate to their binding sites on DNA faster than the physical limit posed by diffusion. Such high association rates can be achieved by alternating between three-dimensional diffusion and one-dimensional sliding along the DNA chain, a mechanism-dubbed facilitated diffusion. By studying a collection of TF binding sites of Escherichia coli from the RegulonDB database and of Bacillus subtilis from DBTBS, we reveal a funnel in the binding energy landscape around the target sequences. We show that such a funnel is linked to the presence of gradients of AT in the base composition of the DNA region around the binding sites. An extensive computational study of the stochastic sliding process along the energetic landscapes obtained from the database shows that the funnel can significantly enhance the probability of TFs to find their target sequences when sliding in their proximity. We demonstrate that this enhancement leads to a speed-up of the association process.


Assuntos
DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Difusão Facilitada , Fatores de Transcrição/metabolismo , Algoritmos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Composição de Bases , Sítios de Ligação/genética , DNA/química , DNA/genética , Bases de Dados Genéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Modelos Teóricos , Ligação Proteica , Regulon/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-26274217

RESUMO

Understanding the conditions ensuring the persistence of a population is an issue of primary importance in population biology. The first theoretical approach to the problem dates back to the 1950s with the Kierstead, Slobodkin, and Skellam (KiSS) model, namely a continuous reaction-diffusion equation for a population growing on a patch of finite size L surrounded by a deadly environment with infinite mortality, i.e., an oasis in a desert. The main outcome of the model is that only patches above a critical size allow for population persistence. Here we introduce an individual-based analog of the KiSS model to investigate the effects of discreteness and demographic stochasticity. In particular, we study the average time to extinction both above and below the critical patch size of the continuous model and investigate the quasistationary distribution of the number of individuals for patch sizes above the critical threshold.


Assuntos
Meio Ambiente , Extinção Biológica , Modelos Biológicos , Dinâmica Populacional , Biomassa , Distribuição Normal , Probabilidade , Processos Estocásticos , Fatores de Tempo
14.
Phys Biol ; 11(2): 026003, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24685517

RESUMO

There is now a certain consensus that transcription factors (TFs) reach their target sites, where they regulate gene transcription, via a mechanism dubbed facilitated diffusion (FD). In FD, the TF cycles between events of 3D diffusion in solution (jumps), 1D diffusion along DNA (sliding), and small jumps (hopping), achieving association rates higher than for 3D diffusion alone. We investigate the FD phenomenology through molecular dynamics simulations in the framework of coarse-grained modeling. We show that, despite the crude approximations, the model generates, upon varying the equilibrium distance of the DNA-TF interaction, a phenomenology matching a number of experimental and numerical results obtained with more refined models. In particular, focusing on the kinematics of the process, we characterize the geometrical properties of TF trajectories during sliding. We find that sliding occurs via helical paths around the DNA helix, leading to a coupling of translation along the DNA axis with rotation around it. The 1D diffusion constant measured in simulations is found to be interwoven with the geometrical properties of sliding and we develop a simple argument that can be used to quantitatively reproduce the measured values.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Fatores de Transcrição/química , Difusão/efeitos dos fármacos , Maleabilidade/efeitos dos fármacos , Cloreto de Sódio/farmacologia
15.
Phys Rev Lett ; 112(4): 044502, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580457

RESUMO

The motility of microorganisms is often biased by gradients in physical and chemical properties of their environment, with myriad implications on their ecology. Here we show that fluid acceleration reorients gyrotactic plankton, triggering small-scale clustering. We experimentally demonstrate this phenomenon by studying the distribution of the phytoplankton Chlamydomonas augustae within a rotating tank and find it to be in good agreement with a new, generalized model of gyrotaxis. When this model is implemented in a direct numerical simulation of turbulent flow, we find that fluid acceleration generates multifractal plankton clustering, with faster and more stable cells producing stronger clustering. By producing accumulations in high-vorticity regions, this process is fundamentally different from clustering by gravitational acceleration, expanding the range of mechanisms by which turbulent flows can impact the spatial distribution of active suspensions.


Assuntos
Chlamydomonas/química , Chlamydomonas/citologia , Modelos Teóricos , Movimento Celular/fisiologia , Simulação por Computador , Hidrodinâmica , Modelos Biológicos , Torque
16.
J Theor Biol ; 338: 1-8, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23999281

RESUMO

We study a stochastic community model able to interpolate from a neutral regime to a niche partitioned regime upon varying a single parameter tuning the intensity of niche stabilization, namely the difference between intraspecific and interspecific competition. By means of a self-consistent approach, we obtain an analytical expression for the species abundance distribution, in excellent agreement with stochastic simulations of the model. In the neutral limit, the Fisher log-series is recovered, while upon increasing the stabilization strength the species abundance distribution develops a maximum for species at intermediate abundances, corresponding to the emergence of a carrying capacity. Numerical studies of species extinction-time distribution show that niche-stabilization strongly affects also the dynamical properties of the system by increasing the average species lifetimes, while suppressing their fluctuations. The results are discussed in view of the niche-neutral debate and of their potential relevance to field data.


Assuntos
Ecossistema , Modelos Biológicos , Animais , Biodiversidade , Comportamento Competitivo/fisiologia , Extinção Biológica , Densidade Demográfica , Dinâmica Populacional , Especificidade da Espécie , Processos Estocásticos
17.
Nat Commun ; 4: 2148, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23852011

RESUMO

Patchiness plays a fundamental role in phytoplankton ecology by dictating the rate at which individual cells encounter each other and their predators. The distribution of motile phytoplankton species is often considerably more patchy than that of non-motile species at submetre length scales, yet the mechanism generating this patchiness has remained unknown. Here we show that strong patchiness at small scales occurs when motile phytoplankton are exposed to turbulent flow. We demonstrate experimentally that Heterosigma akashiwo forms striking patches within individual vortices and prove with a mathematical model that this patchiness results from the coupling between motility and shear. When implemented within a direct numerical simulation of turbulence, the model reveals that cell motility can prevail over turbulent dispersion to create strong fractal patchiness, where local phytoplankton concentrations are increased more than 10-fold. This 'unmixing' mechanism likely enhances ecological interactions in the plankton and offers mechanistic insights into how turbulence intensity impacts ecosystem productivity.


Assuntos
Modelos Estatísticos , Fitoplâncton/fisiologia , Ecossistema , Hidrodinâmica , Movimento
18.
PLoS One ; 7(6): e38232, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22675526

RESUMO

Understanding factors that shape biodiversity and species coexistence across scales is of utmost importance in ecology, both theoretically and for conservation policies. Species-area relationships (SARs), measuring how the number of observed species increases upon enlarging the sampled area, constitute a convenient tool for quantifying the spatial structure of biodiversity. While general features of species-area curves are quite universal across ecosystems, some quantitative aspects can change significantly. Several attempts have been made to link these variations to ecological forces. Within the framework of spatially explicit neutral models, here we scrutinize the effect of varying the local population size (i.e. the number of individuals per site) and the level of habitat saturation (allowing for empty sites). We conclude that species-area curves become shallower when the local population size increases, while habitat saturation, unless strongly violated, plays a marginal role. Our findings provide a plausible explanation of why SARs for microorganisms are flatter than those for larger organisms.


Assuntos
Fenômenos Ecológicos e Ambientais , Modelos Biológicos , Especificidade da Espécie
19.
J Theor Biol ; 301: 141-52, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22381537

RESUMO

We investigate invasions from a biological reservoir to an initially empty, heterogeneous habitat in the presence of advection. The habitat consists of a periodic alternation of favorable and unfavorable patches. In the latter the population dies at fixed rate. In the former it grows either with the logistic or with an Allee effect type dynamics, where the population has to overcome a threshold to grow. We study the conditions for successful invasions and the speed of the invasion process, which is numerically and analytically investigated in several limits. Generically advection enhances the downstream invasion speed but decreases the population size of the invading species, and can even inhibit the invasion process. Remarkably, however, the rate of population increase, which quantifies the invasion efficiency, is maximized by an optimal advection velocity. In models with Allee effect, differently from the logistic case, above a critical unfavorable patch size the population localizes in a favorable patch, being unable to invade the habitat. However, we show that advection, when intense enough, may activate the invasion process.


Assuntos
Ecossistema , Espécies Introduzidas , Modelos Biológicos , Animais , Biomassa , Densidade Demográfica , Dinâmica Populacional , Biologia de Sistemas/métodos
20.
Phys Rev Lett ; 107(17): 174502, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107523

RESUMO

We inquire about the properties of 2D Navier-Stokes turbulence simultaneously forced at small and large scales. The background motivation comes by observational results on atmospheric turbulence. We show that the velocity field is amenable to the sum of two auxiliary velocity fields forced at large and small scale and exhibiting a direct enstrophy and an inverse-energy cascade, respectively. Remarkably, the two auxiliary fields reconcile universal properties of fluxes with positive statistical correlation in the inertial range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...