Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2506: 19-41, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771461

RESUMO

Respiratory syncytial virus (RSV) infection causes considerable mortality and morbidity in infants and young children. RSV infection appears to elicit a mixed immune response characterized by both Th1-type cells and Th2-type cells. This immune response, along with clinical features such as bronchiolitis, wheezing, and respiratory distress caused by RSV infection, presents similarly to many features of asthma and has led to an investigation into the link between severe RSV infection and asthma. RSV infection in mice is a powerful and useful tool for eliciting a Th2-type-driven immune response, lending mechanistic insight into severe RSV infection. Here we present several materials and methods used for propagating and purifying RSV, infecting mice with RSV, and analyzing samples from RSV-infected mice.


Assuntos
Asma , Infecções por Vírus Respiratório Sincicial , Animais , Asma/etiologia , Pré-Escolar , Modelos Animais de Doenças , Humanos , Camundongos , Vírus Sinciciais Respiratórios , Células Th1 , Células Th2
2.
J Clin Invest ; 132(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35025767

RESUMO

Women have higher prevalence of asthma compared with men. In asthma, allergic airway inflammation is initiated by IL-33 signaling through ST2, leading to increased IL-4, IL-5, and IL-13 production and eosinophil infiltration. Foxp3+ Tregs suppress and ST2+ Tregs promote allergic airway inflammation. Clinical studies showed that the androgen dehydroepiandrosterone (DHEA) reduced asthma symptoms in patients, and mouse studies showed that androgen receptor (AR) signaling decreased allergic airway inflammation. Yet the impact of AR signaling on lung Tregs remains unclear. Using AR-deficient and Foxp3 fate-mapping mice, we determined that AR signaling increased Treg suppression during Alternaria extract (Alt Ext; allergen) challenge by stabilizing Foxp3+ Tregs and limiting the number of ST2+ ex-Tregs and IL-13+ Th2 cells and ex-Tregs. AR signaling also decreased Alt Ext-induced ST2+ Tregs in mice by limiting expression of Gata2, a transcription factor for ST2, and by decreasing Alt Ext-induced IL-33 production from murine airway epithelial cells. We confirmed our findings in human cells where 5α-dihydrotestosterone (DHT), an androgen, decreased IL-33-induced ST2 expression in lung Tregs and decreased Alt Ext-induced IL-33 secretion in human bronchial epithelial cells. Our findings showed that AR signaling stabilized Treg suppressive function, providing a mechanism for the sex difference in asthma.


Assuntos
Asma/imunologia , Receptores Androgênicos/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Asma/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Receptores Androgênicos/genética , Transdução de Sinais/genética
3.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529171

RESUMO

Tregs restrain both the innate and adaptive immune systems to maintain homeostasis. Allergic airway inflammation, characterized by a Th2 response that results from a breakdown of tolerance to innocuous environmental antigens, is negatively regulated by Tregs. We previously reported that prostaglandin I2 (PGI2) promoted immune tolerance in models of allergic inflammation; however, the effect of PGI2 on Treg function was not investigated. Tregs from mice deficient in the PGI2 receptor IP (IP KO) had impaired suppressive capabilities during allergic airway inflammatory responses compared with mice in which PGI2 signaling was intact. IP KO Tregs had significantly enhanced expression of immunoglobulin-like transcript 3 (ILT3) compared with WT Tregs, which may contribute to the impairment of the IP KO Treg's ability to suppress Th2 responses. Using fate-mapping mice, we reported that PGI2 signaling prevents Treg reprogramming toward a pathogenic phenotype. PGI2 analogs promoted the differentiation of naive T cells to Tregs in both mice and humans via repression of ß-catenin signaling. Finally, a missense variant in IP in humans was strongly associated with chronic obstructive asthma. Together, these data support that PGI2 signaling licenses Treg suppressive function and that PGI2 is a therapeutic target for enhancing Treg function.


Assuntos
Asma/imunologia , Reprogramação Celular/imunologia , Epoprostenol/imunologia , Tolerância Imunológica , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Asma/genética , Asma/patologia , Reprogramação Celular/genética , Doença Crônica , Epoprostenol/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de Epoprostenol/genética , Receptores de Epoprostenol/imunologia , Transdução de Sinais/genética , Linfócitos T Reguladores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...