Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(25): 251102, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639755

RESUMO

We report the first plausible optical electromagnetic counterpart to a (candidate) binary black hole merger. Detected by the Zwicky Transient Facility, the electromagnetic flare is consistent with expectations for a kicked binary black hole merger in the accretion disk of an active galactic nucleus [B. McKernan, K. E. S. Ford, I. Bartos et al., Astrophys. J. Lett. 884, L50 (2019)AJLEEY2041-821310.3847/2041-8213/ab4886] and is unlikely [

2.
Nature ; 575(7783): 459-463, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31748725

RESUMO

Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission1,2. Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands1-6. The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock7-9. Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C10,11. Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 × 10-6 to 1012 electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs.

3.
Science ; 362(6411): 201-206, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309948

RESUMO

Compact neutron star binary systems are produced from binary massive stars through stellar evolution involving up to two supernova explosions. The final stages in the formation of these systems have not been directly observed. We report the discovery of iPTF 14gqr (SN 2014ft), a type Ic supernova with a fast-evolving light curve indicating an extremely low ejecta mass (≈0.2 solar masses) and low kinetic energy (≈2 × 1050 ergs). Early photometry and spectroscopy reveal evidence of shock cooling of an extended helium-rich envelope, likely ejected in an intense pre-explosion mass-loss episode of the progenitor. Taken together, we interpret iPTF 14gqr as evidence for ultra-stripped supernovae that form neutron stars in compact binary systems.

4.
Nat Commun ; 9(1): 4089, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327476

RESUMO

The recent discovery of a gamma-ray burst (GRB) coincident with the gravitational-wave (GW) event GW170817 revealed the existence of a population of low-luminosity short duration gamma-ray transients produced by neutron star mergers in the nearby Universe. These events could be routinely detected by existing gamma-ray monitors, yet previous observations failed to identify them without the aid of GW triggers. Here we show that GRB150101B is an analogue of GRB170817A located at a cosmological distance. GRB150101B is a faint short burst characterized by a bright optical counterpart and a long-lived X-ray afterglow. These properties are unusual for standard short GRBs and are instead consistent with an explosion viewed off-axis: the optical light is produced by a luminous kilonova, while the observed X-rays trace the GRB afterglow viewed at an angle of ~13°. Our findings suggest that these properties could be common among future electromagnetic counterparts of GW sources.

5.
Nature ; 554(7693): 497-499, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29469097

RESUMO

It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.

6.
Astrophys J Suppl Ser ; 238(2)2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31160831

RESUMO

We present results from a systematic selection of tidal disruption events (TDEs) in a wide-area (4800 deg2), g + R band, Intermediate Palomar Transient Factory (iPTF) experiment. Our selection targets typical optically-selected TDEs: bright (>60% flux increase) and blue transients residing in the center of red galaxies. Using photometric selection criteria to down-select from a total of 493 nuclear transients to a sample of 26 sources, we then use follow-up UV imaging with the Neil Gehrels Swift Telescope, ground-based optical spectroscopy, and light curve fitting to classify them as 14 Type Ia supernovae (SNe Ia), 9 highly variable active galactic nuclei (AGNs), 2 confirmed TDEs, and 1 potential core-collapse supernova. We find it possible to filter AGNs by employing a more stringent transient color cut (g - r < -0.2 mag); further, UV imaging is the best discriminator for filtering SNe, since SNe Ia can appear as blue, optically, as TDEs in their early phases. However, when UV-optical color is unavailable, higher precision astrometry can also effectively reduce SNe contamination in the optical. Our most stringent optical photometric selection criteria yields a 4.5:1 contamination rate, allowing for a manageable number of TDE candidates for complete spectroscopic follow-up and real-time classification in the ZTF era. We measure a TDE per galaxy rate of 1.7 - 1.3 + 2.9 × 10 - 4 gal - 1 yr - 1 (90% CL in Poisson statistics). This does not account for TDEs outside our selection criteria, thus may not reflect the total TDE population, which is yet to be fully mapped.

7.
Science ; 358(6370): 1565-1570, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29038371

RESUMO

With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (≈0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30° away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a γ-ray burst afterglow).

8.
Science ; 358(6370): 1559-1565, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29038373

RESUMO

Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.

9.
Nature ; 547(7664): 425-427, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28748924

RESUMO

Newly formed black holes of stellar mass launch collimated outflows (jets) of ionized matter that approach the speed of light. These outflows power prompt, brief and intense flashes of γ-rays known as γ-ray bursts (GRBs), followed by longer-lived afterglow radiation that is detected across the electromagnetic spectrum. Measuring the polarization of the observed GRB radiation provides a direct probe of the magnetic fields in the collimated jets. Rapid-response polarimetric observations of newly discovered bursts have probed the initial afterglow phase, and show that, minutes after the prompt emission has ended, the degree of linear polarization can be as high as 30 per cent-consistent with the idea that a stable, globally ordered magnetic field permeates the jet at large distances from the central source. By contrast, optical and γ-ray observations during the prompt phase have led to discordant and often controversial results, and no definitive conclusions have been reached regarding the origin of the prompt radiation or the configuration of the magnetic field. Here we report the detection of substantial (8.3 ± 0.8 per cent from our most conservative simulation), variable linear polarization of a prompt optical flash that accompanied the extremely energetic and long-lived prompt γ-ray emission from GRB 160625B. Our measurements probe the structure of the magnetic field at an early stage of the jet, closer to its central black hole, and show that the prompt phase is produced via fast-cooling synchrotron radiation in a large-scale magnetic field that is advected from the black hole and distorted by dissipation processes within the jet.

10.
Nature ; 509(7501): 471-4, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24848059

RESUMO

The explosive fate of massive Wolf-Rayet stars (WRSs) is a key open question in stellar physics. An appealing option is that hydrogen-deficient WRSs are the progenitors of some hydrogen-poor supernova explosions of types IIb, Ib and Ic (ref. 2). A blue object, having luminosity and colours consistent with those of some WRSs, has recently been identified in pre-explosion images at the location of a supernova of type Ib (ref. 3), but has not yet been conclusively determined to have been the progenitor. Similar work has so far only resulted in non-detections. Comparison of early photometric observations of type Ic supernovae with theoretical models suggests that the progenitor stars had radii of less than 10(12) centimetres, as expected for some WRSs. The signature of WRSs, their emission line spectra, cannot be probed by such studies. Here we report the detection of strong emission lines in a spectrum of type IIb supernova 2013cu (iPTF13ast) obtained approximately 15.5 hours after explosion (by 'flash spectroscopy', which captures the effects of the supernova explosion shock breakout flash on material surrounding the progenitor star). We identify Wolf-Rayet-like wind signatures, suggesting a progenitor of the WN(h) subclass (those WRSs with winds dominated by helium and nitrogen, with traces of hydrogen). The extent of this dense wind may indicate increased mass loss from the progenitor shortly before its explosion, consistent with recent theoretical predictions.

11.
Nature ; 494(7435): 65-7, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23389540

RESUMO

Some observations suggest that very massive stars experience extreme mass-loss episodes shortly before they explode as supernovae, as do several models. Establishing a causal connection between these mass-loss episodes and the final explosion would provide a novel way to study pre-supernova massive-star evolution. Here we report observations of a mass-loss event detected 40 days before the explosion of the type IIn supernova SN 2010mc (also known as PTF 10tel). Our photometric and spectroscopic data suggest that this event is a result of an energetic outburst, radiating at least 6 × 10(47) erg of energy and releasing about 10(-2) solar masses of material at typical velocities of 2,000 km s(-1). The temporal proximity of the mass-loss outburst and the supernova explosion implies a causal connection between them. Moreover, we find that the outburst luminosity and velocity are consistent with the predictions of the wave-driven pulsation model, and disfavour alternative suggestions.

12.
Science ; 337(6097): 942-5, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22923575

RESUMO

There is a consensus that type Ia supernovae (SNe Ia) arise from the thermonuclear explosion of white dwarf stars that accrete matter from a binary companion. However, direct observation of SN Ia progenitors is lacking, and the precise nature of the binary companion remains uncertain. A temporal series of high-resolution optical spectra of the SN Ia PTF 11kx reveals a complex circumstellar environment that provides an unprecedentedly detailed view of the progenitor system. Multiple shells of circumstellar material are detected, and the SN ejecta are seen to interact with circumstellar material starting 59 days after the explosion. These features are best described by a symbiotic nova progenitor, similar to RS Ophiuchi.

13.
Science ; 333(6039): 199-202, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21680811

RESUMO

Variable x-ray and γ-ray emission is characteristic of the most extreme physical processes in the universe. We present multiwavelength observations of a unique γ-ray-selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source. We pinpoint the event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy emission has lasted much longer than any γ-ray burst, whereas its peak luminosity was ∼100 times higher than bright active galactic nuclei. The association of the outburst with the center of its host galaxy suggests that this phenomenon has its origin in a rare mechanism involving the massive black hole in the nucleus of that galaxy.

14.
Nature ; 474(7352): 487-9, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21654747

RESUMO

Supernovae are stellar explosions driven by gravitational or thermonuclear energy that is observed as electromagnetic radiation emitted over weeks or more. In all known supernovae, this radiation comes from internal energy deposited in the outflowing ejecta by one or more of the following processes: radioactive decay of freshly synthesized elements (typically (56)Ni), the explosion shock in the envelope of a supergiant star, and interaction between the debris and slowly moving, hydrogen-rich circumstellar material. Here we report observations of a class of luminous supernovae whose properties cannot be explained by any of these processes. The class includes four new supernovae that we have discovered and two previously unexplained events (SN 2005ap and SCP 06F6) that we can now identify as members of the same class. These supernovae are all about ten times brighter than most type Ia supernova, do not show any trace of hydrogen, emit significant ultraviolet flux for extended periods of time and have late-time decay rates that are inconsistent with radioactivity. Our data require that the observed radiation be emitted by hydrogen-free material distributed over a large radius (∼10(15) centimetres) and expanding at high speeds (>10(4) kilometres per second). These long-lived, ultraviolet-luminous events can be observed out to redshifts z > 4.

15.
Nature ; 465(7296): 322-5, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20485429

RESUMO

Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The 'old' environment near the supernova location, and the very low derived ejected mass ( approximately 0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous or a regular type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive (44)Ti.

16.
Nature ; 462(7273): 624-7, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19956255

RESUMO

Stars with initial masses such that 10M[symbol: see text] or= 140M[symbol: see text] (if such exist) develop oxygen cores with masses, M(core), that exceed 50M[symbol: see text], where high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs before oxygen ignition and leads to a violent contraction which triggers a nuclear explosion that unbinds the star in a pair-instability supernova. Transitional objects with 100M[symbol: see text] < M(initial) < 140M[symbol: see text] may end up as iron-core-collapse supernovae following violent mass ejections, perhaps as a result of brief episodes of pair instability, and may already have been identified. Here we report observations of supernova SN 2007bi, a luminous, slowly evolving object located within a dwarf galaxy. We estimate the exploding core mass to be M(core) approximately 100M[symbol: see text], in which case theory unambiguously predicts a pair-instability supernova. We show that >3M[symbol: see text] of radioactive (56)Ni was synthesized during the explosion and that our observations are well fitted by models of pair-instability supernovae. This indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic stellar mass limit, which perhaps result from processes similar to those that created the first stars in the Universe.

17.
Nature ; 461(7268): 1254-7, 2009 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19865165

RESUMO

Long-duration gamma-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-alpha emitting galaxy. Here we report that GRB 090423 lies at a redshift of z approximately 8.2, implying that massive stars were being produced and dying as GRBs approximately 630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.

18.
Nature ; 453(7194): 469-74, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18497815

RESUMO

Massive stars end their short lives in spectacular explosions--supernovae--that synthesize new elements and drive galaxy evolution. Historically, supernovae were discovered mainly through their 'delayed' optical light (some days after the burst of neutrinos that marks the actual event), preventing observations in the first moments following the explosion. As a result, the progenitors of some supernovae and the events leading up to their violent demise remain intensely debated. Here we report the serendipitous discovery of a supernova at the time of the explosion, marked by an extremely luminous X-ray outburst. We attribute the outburst to the 'break-out' of the supernova shock wave from the progenitor star, and show that the inferred rate of such events agrees with that of all core-collapse supernovae. We predict that future wide-field X-ray surveys will catch each year hundreds of supernovae in the act of exploding.

19.
Nature ; 447(7143): 458-60, 2007 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-17522679

RESUMO

Historically, variable and transient sources have both surprised astronomers and provided new views of the heavens. Here we report the discovery of an optical transient in the outskirts of the lenticular galaxy Messier 85 in the Virgo cluster. With a peak absolute R magnitude of -12, this event is distinctly brighter than novae, but fainter than type Ia supernovae (which are expected in a population of old stars in lenticular galaxies). Archival images of the field do not show a luminous star at that position with an upper limit in the g filter of about -4.1 mag, so it is unlikely to be a giant eruption from a luminous blue variable star. Over a two-month period, the transient source emitted radiation energy of almost 10(47) erg and subsequently faded in the optical sky. It is similar to, but six times more luminous at peak than, an enigmatic transient in the galaxy M31 (ref. 1). A possible origin of M85 OT2006-1 is a stellar merger. If so, searches for similar events in nearby galaxies will not only allow study of the physics of hyper-Eddington sources, but also probe an important phase in the evolution of stellar binary systems.

20.
Nature ; 444(7122): 1053-5, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17183318

RESUMO

Over the past decade, our physical understanding of gamma-ray bursts (GRBs) has progressed rapidly, thanks to the discovery and observation of their long-lived afterglow emission. Long-duration (> 2 s) GRBs are associated with the explosive deaths of massive stars ('collapsars', ref. 1), which produce accompanying supernovae; the short-duration (< or = 2 s) GRBs have a different origin, which has been argued to be the merger of two compact objects. Here we report optical observations of GRB 060614 (duration approximately 100 s, ref. 10) that rule out the presence of an associated supernova. This would seem to require a new explosive process: either a massive collapsar that powers a GRB without any associated supernova, or a new type of 'engine', as long-lived as the collapsar but without a massive star. We also show that the properties of the host galaxy (redshift z = 0.125) distinguish it from other long-duration GRB hosts and suggest that an entirely new type of GRB progenitor may be required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...