Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37688186

RESUMO

This work presents a comprehensive investigation of an experimental study conducted on ultra-high molecular weight polyethylene (UHMWPE) sheets using single point incremental forming (SPIF). The analysis is performed within a previously established research framework to evaluate formability and failure characteristics, including necking and fracture, in both conventional Nakajima tests and incremental sheet forming specimens. The experimental design of the SPIF tests incorporates process parameters such as spindle speed and step down to assess their impact on the formability of the material and the corresponding failure modes. The results indicate that a higher step down value has a positive effect on formability in the SPIF context. The study has identified the tool trajectory in SPIF as the primary influencing factor in the twisting failure mode. Implementing a bidirectional tool trajectory effectively reduced instances of twisting. Additionally, this work explores a medical case study that examines the manufacturing of a polyethylene liner device for a total hip replacement. This investigation critically analyses the manufacturing of plastic liner using SPIF, focusing on its formability and the elastic recovery exhibited by the material.

2.
J Clin Invest ; 133(8)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36862511

RESUMO

Circadian rhythmicity in renal function suggests rhythmic adaptations in renal metabolism. To decipher the role of the circadian clock in renal metabolism, we studied diurnal changes in renal metabolic pathways using integrated transcriptomic, proteomic, and metabolomic analysis performed on control mice and mice with an inducible deletion of the circadian clock regulator Bmal1 in the renal tubule (cKOt). With this unique resource, we demonstrated that approximately 30% of RNAs, approximately 20% of proteins, and approximately 20% of metabolites are rhythmic in the kidneys of control mice. Several key metabolic pathways, including NAD+ biosynthesis, fatty acid transport, carnitine shuttle, and ß-oxidation, displayed impairments in kidneys of cKOt mice, resulting in perturbed mitochondrial activity. Carnitine reabsorption from primary urine was one of the most affected processes with an approximately 50% reduction in plasma carnitine levels and a parallel systemic decrease in tissue carnitine content. This suggests that the circadian clock in the renal tubule controls both kidney and systemic physiology.


Assuntos
Relógios Circadianos , Camundongos , Animais , Relógios Circadianos/genética , Multiômica , Proteômica , Ritmo Circadiano/fisiologia , Rim/metabolismo , Carnitina , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo
3.
JCI Insight ; 7(4)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35191396

RESUMO

Peroxisomes are specialized cellular organelles involved in a variety of metabolic processes. In humans, mutations leading to complete loss of peroxisomes cause multiorgan failure (Zellweger's spectrum disorders, ZSD), including renal impairment. However, the (patho)physiological role of peroxisomes in the kidney remains unknown. We addressed the role of peroxisomes in renal function in mice with conditional ablation of peroxisomal biogenesis in the renal tubule (cKO mice). Functional analyses did not reveal any overt kidney phenotype in cKO mice. However, infant male cKO mice had lower body and kidney weights, and adult male cKO mice exhibited substantial reductions in kidney weight and kidney weight/body weight ratio. Stereological analysis showed an increase in mitochondria density in proximal tubule cells of cKO mice. Integrated transcriptome and metabolome analyses revealed profound reprogramming of a number of metabolic pathways, including metabolism of glutathione and biosynthesis/biotransformation of several major classes of lipids. Although this analysis suggested compensated oxidative stress, challenge with high-fat feeding did not induce significant renal impairments in cKO mice. We demonstrate that renal tubular peroxisomes are dispensable for normal renal function. Our data also suggest that renal impairments in patients with ZSD are of extrarenal origin.


Assuntos
Túbulos Renais/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Animais , Feminino , Túbulos Renais/citologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Estresse Oxidativo
4.
Kidney Int ; 101(3): 563-573, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34838539

RESUMO

The circadian clock is a ubiquitous molecular time-keeping mechanism which synchronizes cellular, tissue, and systemic biological functions with 24-hour environmental cycles. Local circadian clocks drive cell type- and tissue-specific rhythms and their dysregulation has been implicated in pathogenesis and/or progression of a broad spectrum of diseases. However, the pathophysiological role of intrinsic circadian clocks in the kidney of diabetics remains unknown. To address this question, we induced type I diabetes with streptozotocin in mice devoid of the circadian transcriptional regulator BMAL1 in podocytes (cKOp mice) or in the kidney tubule (cKOt mice). There was no association between dysfunction of the circadian clock and the development of diabetic nephropathy in cKOp and cKOt mice with diabetes. However, cKOt mice with diabetes exhibited exacerbated hyperglycemia, increased fractional excretion of glucose in the urine, enhanced polyuria, and a more pronounced kidney hypertrophy compared to streptozotocin-treated control mice. mRNA and protein expression analyses revealed substantial enhancement of the gluconeogenic pathway in kidneys of cKOt mice with diabetes as compared to diabetic control mice. Transcriptomic analysis along with functional analysis of cKOt mice with diabetes identified changes in multiple mechanisms directly or indirectly affecting the gluconeogenic pathway. Thus, we demonstrate that dysfunction of the intrinsic kidney tubule circadian clock can aggravate diabetic hyperglycemia via enhancement of gluconeogenesis in the kidney proximal tubule and further highlight the importance of circadian behavior in patients with diabetes.


Assuntos
Relógios Circadianos , Diabetes Mellitus , Hiperglicemia , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Diabetes Mellitus/metabolismo , Gluconeogênese , Humanos , Hiperglicemia/metabolismo , Rim/metabolismo , Túbulos Renais/metabolismo , Camundongos
5.
Materials (Basel) ; 13(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093044

RESUMO

By proposing an adaptation of the methodology usually used in metal forming, this paper aims to provide a general procedure for determining the forming limits, by necking and fracture, of polymeric sheet. The experimental work was performed by means of Nakajima specimens with different geometries to allow to obtain strains in the tensile, plane, biaxial and equibiaxial states for Polycarbonate sheet with 1 mm of thickness. The application of the time-dependent and flat-valley approaches used in metals has been revealed appropriate to characterize the onset of necking and obtain the forming limits of polycarbonate, despite the stable necking propagation typical of polymeric sheets. An analysis of the evolution of the strain paths along a section perpendicular to the crack allowed for a deeper understanding of the steady necking propagation behaviour and the adoption of the methodology of metals to polymers. The determination of the fracture strains was enhanced with the consideration of the principal strains of the DIC system in the last stage, just before fracture, due to the significant elastic recovery typical of polymeric sheets. As a result of this analysis, accurate formability limits by necking and fracture are obtained for polycarbonate sheet, together with the principal strain space, providing a general framework for analysing incremental sheet forming processes where the knowledge of the fracture limits is relevant.

6.
Acta Physiol (Oxf) ; 229(3): e13457, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32072766

RESUMO

AIM: Arginase 2 (ARG2) is a mitochondrial enzyme that catalyses hydrolysis of l-arginine into urea and l-ornithine. In the kidney, ARG2 is localized to the S3 segment of the proximal tubule. It has been shown that expression and activity of this enzyme are upregulated in a variety of renal pathologies, including ischemia-reperfusion (IR) injury. However, the (patho)physiological role of ARG2 in the renal tubule remains largely unknown. METHODS: We addressed this question in mice with conditional knockout of Arg2 in renal tubular cells (Arg2lox/lox /Pax8-rtTA/LC1 or, cKO mice). RESULTS: We demonstrate that cKO mice exhibit impaired urea concentration and osmolality gradients along the corticomedullary axis. In a model of unilateral ischemia-reperfusion injury (UIRI) with an intact contralateral kidney, ischemia followed by 24 hours of reperfusion resulted in significantly more pronounced histological damage in ischemic kidneys from cKO mice compared to control and sham-operated mice. In parallel, UIRI-subjected cKO mice exhibited a broad range of renal functional abnormalities, including albuminuria and aminoaciduria. Fourteen days after UIRI, the cKO mice exhibited complex phenotype characterized by significantly lower body weight, increased plasma levels of early predictive markers of kidney disease progression (asymmetric dimethylarginine and symmetric dimethylarginine), impaired mitochondrial function in the ischemic kidney but no difference in kidney fibrosis as compared to control mice. CONCLUSION: Collectively, these results establish the role of ARG2 in the formation of corticomedullary urea and osmolality gradients and suggest that this enzyme attenuates kidney damage in ischemia-reperfusion injury.


Assuntos
Arginase , Rim/patologia , Traumatismo por Reperfusão , Animais , Arginase/fisiologia , Túbulos Renais , Camundongos , Camundongos Knockout , Ureia
7.
Sci Rep ; 9(1): 16089, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695128

RESUMO

Glomerular filtration rate (GFR), or the rate of primary urine formation, is the key indicator of renal function. Studies have demonstrated that GFR exhibits significant circadian rhythmicity and, that these rhythms are disrupted in a number of pathologies. Here, we tested a hypothesis that the circadian rhythm of GFR is driven by intrinsic glomerular circadian clocks. We used mice lacking the circadian clock protein BMAL1 specifically in podocytes, highly specialized glomerular cells critically involved in the process of glomerular filtration (Bmal1lox/lox/Nphs2-rtTA/LC1 or, cKO mice). Circadian transcriptome profiling performed on isolated glomeruli from control and cKO mice revealed that the circadian clock controls expression of multiple genes encoding proteins essential for normal podocyte function. Direct assessment of glomerular filtration by inulin clearance demonstrated that circadian rhythmicity in GFR was lost in cKO mice that displayed an ultradian rhythm of GFR with 12-h periodicity. The disruption of circadian rhythmicity in GFR was paralleled by significant changes in circadian patterns of urinary creatinine, sodium, potassium and water excretion and by alteration in the diurnal pattern of plasma aldosterone levels. Collectively, these results indicate that the intrinsic circadian clock in podocytes participate in circadian rhythmicity of GFR.


Assuntos
Relógios Circadianos , Rim/fisiologia , Podócitos/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Ritmo Circadiano , Taxa de Filtração Glomerular , Masculino , Camundongos , Camundongos Knockout , Potássio/metabolismo , Sódio/metabolismo , Ritmo Ultradiano
8.
Materials (Basel) ; 11(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340404

RESUMO

Single point incremental forming (SPIF) has been demonstrated to accomplish current trends and requirements in industry. Recent studies have applied this technology to hole-flanging by performing different forming strategies using one or multiple stages. In this work, an optimization procedure is proposed to balance fabrication time and thickness distribution along the produced flange in a two-stage variant. A detailed analytical, numerical and experimental investigation is carried out to provide, evaluate and corroborate the optimal strategy. The methodology begins by analysing the single-stage process to understand the deformation and failure mechanisms. Accordingly, a parametric two-stage SPIF strategy is proposed and evaluated by an explicit Finite Element Analysis to find the optimal parameters. The study is focused on AA7075-O sheets with different pre-cut hole diameters and considering a variety of forming tool radii. The study exposes the relevant role of the tool radius in finding the optimal hole-flanging process by the proposed two-stage SPIF.

9.
JBMR Plus ; 2(4): 195-205, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30038965

RESUMO

Mediator of ErbB2-driven cell Motility 1 (MEMO1) is an intracellular redox protein that integrates growth factors signaling with the intracellular redox state. We have previously reported that mice lacking Memo1 displayed higher plasma calcium levels and other alterations of mineral metabolism, but the underlying mechanism was unresolved and the bone phenotype was not described. Here, we show that Cre/lox-mediated MEMO1 deletion in the whole body of C57Bl/6 mice (Memo cKO) leads to severely altered trabecular bone and lower mineralization, with preserved osteoblast and osteoclast number and activity, but altered osteoblast response to epidermal growth factor (EGF) and FGF2. More strikingly, Memo cKO mice display decreased alkaline phosphatase (ALP) activity in serum and in bone, while ALPL expression level is unchanged. Bone intracellular redox state is significantly altered in Memo cKO mice and we inferred that ALP dimerization was reduced in Memo cKO mice. Indeed, despite similar ALP oxidation, we found increased ALP sensitivity to detergent in Memo cKO bone leading to lower ALP dimerization capability. Thus, we report a severe bone phenotype and dysfunctional bone ALP with local alteration of the redox state in Memo cKO mice that partially mimics hypophosphatasia, independent of ALPL mutations. These findings reveal Memo as a key player in bone homeostasis and underline a role of bone redox state in controlling ALP activity.

10.
J Am Soc Nephrol ; 28(4): 1073-1078, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27799484

RESUMO

Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is critical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the molecular identity of the protein(s) participating in the basolateral Pi efflux remains unknown. Evidence has suggested that xenotropic and polytropic retroviral receptor 1 (XPR1) might be involved in this process. Here, we show that conditional inactivation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi reabsorption. Analysis of Pi transport in primary cultures of proximal tubular cells or in freshly isolated renal tubules revealed that this Xpr1 deficiency significantly affected Pi efflux. Further, mice with conditional inactivation of Xpr1 in the renal tubule exhibited generalized proximal tubular dysfunction indicative of Fanconi syndrome, characterized by glycosuria, aminoaciduria, calciuria, and albuminuria. Dramatic alterations in the renal transcriptome, including a significant reduction in NaPi-IIa/NaPi-IIc expression, accompanied these functional changes. Additionally, Xpr1-deficient mice developed hypophosphatemic rickets secondary to renal dysfunction. These results identify XPR1 as a major regulator of Pi homeostasis and as a potential therapeutic target in bone and kidney disorders.


Assuntos
Síndrome de Fanconi/etiologia , Néfrons , Receptores Acoplados a Proteínas G/fisiologia , Receptores Virais/fisiologia , Raquitismo Hipofosfatêmico/etiologia , Animais , Feminino , Masculino , Camundongos , Receptor do Retrovírus Politrópico e Xenotrópico
11.
Med. oral patol. oral cir. bucal (Internet) ; 21(6): e766-e775, nov. 2016. tab, graf
Artigo em Inglês | IBECS | ID: ibc-157758

RESUMO

BACKGROUND: Temporo-Mandibular Joint (TMJ) replacement has been used clinically for years. The objective of this study was to evaluate outcomes achieved in patients with two different categories of TMJ prostheses. MATERIAL AND METHODS: All patients who had a TMJ replacement (TMJR) implanted during the study period from 2006 through 2012 were included in this 3-year prospective study. All procedures were performed using the Biomet Microfixation TMJ Replacement System, and all involved replacing both the skull base component (glenoid fossa) and the mandibular condyle. RESULTS: Fifty-seven patients (38 females and 19 males), involving 75 TMJs with severe disease requiring reconstruction (39 unilateral, 18 bilateral) were operated on consecutively, and 68 stock prostheses and 7 custom-made prostheses were implanted. The mean age at surgery was 52.6 ± 11.5 years in the stock group and 51.8 ± 11.7 years in the custom-made group. In the stock group, after three years of TMJR, results showed a reduction in pain intensity from 6.4 ±1.4 to 1.6 ± 1.2 (p < 0.001), and an improvement in jaw opening from 2.7±0.9 cm to 4.2 ± 0.7 cm (p < 0.001). In the custom-made group, after three years of TMJR, results showed a reduction in pain intensity from 6.0 ± 1.6 to 2.2 ± 0.4 (p < 0.001), and an improvement in jaw opening from 1.5 ± 0.5 cm to 4.3 ± 0.6 cm (p < 0.001). No statistically significant differences between two groups were detected. CONCLUSIONS: The results of this three-year prospective study support the surgical placement of TMJ prostheses (stock prosthetic, and custom-made systems), and show that the approach is efficacious and safe, reduces pain, and improves maximum mouth opening movement, with few complications. As such, TMJR represents a viable technique and a stable long-term solution for cranio-mandibular reconstruction in patients with irreversible end-stage TMJ disease. Comparing stock and custom-made groups, no statistically significant differences were detected with respect to pain intensity reduction and maximum mouth opening improvement


Assuntos
Humanos , Transtornos da Articulação Temporomandibular/cirurgia , Artroplastia de Substituição/métodos , Substitutos Ósseos/uso terapêutico , Implantação de Prótese/métodos , Prótese Articular , Transtornos Craniomandibulares/cirurgia , Estudos Prospectivos
12.
J Am Soc Nephrol ; 27(10): 2997-3004, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27056296

RESUMO

The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question, we performed a combined functional, transcriptomic, and metabolomic analysis in mice with inducible conditional knockout (cKO) of BMAL1, which is critically involved in the circadian clock system, in renal tubular cells (Bmal1lox/lox/Pax8-rtTA/LC1 mice). Induction of cKO in adult mice did not produce obvious abnormalities in renal sodium, potassium, or water handling. Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport in cKO mice compared with control littermates. Furthermore, kidneys from cKO mice exhibited a significant decrease in the NAD+-to-NADH ratio, which reflects the oxidative phosphorylation-to-glycolysis ratio and/or the status of mitochondrial function. Metabolome profiling showed significant changes in plasma levels of amino acids, biogenic amines, acylcarnitines, and lipids. In-depth analysis of two selected pathways revealed a significant increase in plasma urea level correlating with increased renal Arginase II activity, hyperargininemia, and increased kidney arginine content as well as a significant increase in plasma creatinine concentration and a reduced capacity of the kidney to secrete anionic drugs (furosemide) paralleled by an approximate 80% decrease in the expression level of organic anion transporter 3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at the intrarenal and systemic levels and are involved in drug disposition.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/genética , Diuréticos/metabolismo , Furosemida/metabolismo , Rim/metabolismo , Metaboloma/genética , Animais , Diuréticos/sangue , Furosemida/sangue , Camundongos , Néfrons
13.
Kidney Int ; 87(5): 940-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25565311

RESUMO

Urate is the metabolic end point of purines in humans. Although supra-physiological plasma urate levels are associated with obesity, insulin resistance, dyslipidemia, and hypertension, a causative role is debated. We previously established a mouse model of hyperuricemia by liver-specific deletion of Glut9, a urate transporter that provides urate to the hepatocyte enzyme uricase. These LG9 knockout mice show mild hyperuricemia (120 µmol/l), which can be further increased by the urate precursor inosine. Here, we explored the role of progressive hyperuricemia on the cardiovascular function. Arterial blood pressure and heart rate were periodically measured by telemetry over 6 months in LG9 knockout mice supplemented with incremental amounts of inosine in a normal chow diet. This long-term inosine treatment elicited a progressive increase in uricemia up to 300 µmol/l; however, it did not modify heart rate or mean arterial blood pressure in LG9 knockout compared with control mice. Inosine treatment did not alter cardiac morphology or function measured by ultrasound echocardiography. However, it did induce mild renal dysfunction as revealed by higher plasma creatinine levels, lower glomerular filtration rate, and histological signs of chronic inflammation and fibrosis. Thus, in LG9 knockout mice, inosine-induced hyperuricemia was not associated with hypertension despite partial renal deficiency. This does not support a direct role of urate in the control of blood pressure.


Assuntos
Pressão Sanguínea , Proteínas Facilitadoras de Transporte de Glucose/genética , Frequência Cardíaca , Hiperuricemia/fisiopatologia , Animais , Modelos Animais de Doenças , Ecocardiografia , Hiperuricemia/diagnóstico por imagem , Hiperuricemia/etiologia , Inosina , Rim/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
J Am Soc Nephrol ; 25(7): 1430-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24652800

RESUMO

The circadian timing system is critically involved in the maintenance of fluid and electrolyte balance and BP control. However, the role of peripheral circadian clocks in these homeostatic mechanisms remains unknown. We addressed this question in a mouse model carrying a conditional allele of the circadian clock gene Bmal1 and expressing Cre recombinase under the endogenous Renin promoter (Bmal1(lox/lox)/Ren1(d)Cre mice). Analysis of Bmal1(lox/lox)/Ren1(d)Cre mice showed that the floxed Bmal1 allele was excised in the kidney. In the kidney, BMAL1 protein expression was absent in the renin-secreting granular cells of the juxtaglomerular apparatus and the collecting duct. A partial reduction of BMAL1 expression was observed in the medullary thick ascending limb. Functional analyses showed that Bmal1(lox/lox)/Ren1(d)Cre mice exhibited multiple abnormalities, including increased urine volume, changes in the circadian rhythm of urinary sodium excretion, increased GFR, and significantly reduced plasma aldosterone levels. These changes were accompanied by a reduction in BP. These results show that local renal circadian clocks control body fluid and BP homeostasis.


Assuntos
Pressão Sanguínea/fisiologia , Relógios Circadianos/fisiologia , Homeostase/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Fatores de Transcrição ARNTL/fisiologia , Animais , Masculino , Camundongos , Renina/fisiologia
15.
J Clin Invest ; 123(7): 3166-71, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23934124

RESUMO

Paracrine communication between different parts of the renal tubule is increasingly recognized as an important determinant of renal function. Previous studies have shown that changes in dietary acid-base load can reverse the direction of apical α-ketoglutarate (αKG) transport in the proximal tubule and Henle's loop from reabsorption (acid load) to secretion (base load). Here we show that the resulting changes in the luminal concentrations of αKG are sensed by the αKG receptor OXGR1 expressed in the type B and non-A-non-B intercalated cells of the connecting tubule (CNT) and the cortical collecting duct (CCD). The addition of 1 mM αKG to the tubular lumen strongly stimulated Cl(-)-dependent HCO(3)(-) secretion and electroneutral transepithelial NaCl reabsorption in microperfused CCDs of wild-type mice but not Oxgr1(-/-) mice. Analysis of alkali-loaded mice revealed a significantly reduced ability of Oxgr1(-/-) mice to maintain acid-base balance. Collectively, these results demonstrate that OXGR1 is involved in the adaptive regulation of HCO(3)(-) secretion and NaCl reabsorption in the CNT/CCD under acid-base stress and establish αKG as a paracrine mediator involved in the functional coordination of the proximal and the distal parts of the renal tubule.


Assuntos
Equilíbrio Ácido-Base , Ácidos Cetoglutáricos/urina , Túbulos Renais Coletores/fisiologia , Comunicação Parácrina , Animais , Bicarbonatos/metabolismo , Técnicas In Vitro , Ácidos Cetoglutáricos/sangue , Masculino , Camundongos , Camundongos Knockout , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Cloreto de Sódio/metabolismo
16.
FASEB J ; 26(7): 2859-67, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22459151

RESUMO

Maintenance by the kidney of stable plasma K(+) values is crucial, as plasma K(+) controls muscle and nerve activity. Since renal K(+) excretion is regulated by the circadian clock, we aimed to identify the ion transporters involved in this process. In control mice, the renal mRNA expression of H,K-ATPase type 2 (HKA2) is 25% higher during rest compared to the activity period. Conversely, under dietary K(+) restriction, HKA2 expression is ∼40% higher during the activity period. This reversal suggests that HKA2 contributes to the circadian regulation of K(+) homeostasis. Compared to their wild-type (WT) littermates, HKA2-null mice fed a normal diet have 2-fold higher K(+) renal excretion during rest. Under K(+) restriction, their urinary K(+) loss is 40% higher during the activity period. This inability to excrete K(+) "on time" is reflected in plasma K(+) values, which vary by 12% between activity and rest periods in HKA2-null mice but remain stable in WT mice. Analysis of the circadian expression of HKA2 regulators suggests that Nrf2, but not progesterone, contributes to its rhythmicity. Therefore, HKA2 acts to maintain the circadian rhythm of urinary K(+) excretion and preserve stable plasma K(+) values throughout the day.


Assuntos
Ritmo Circadiano/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Potássio/sangue , Animais , Proteínas CLOCK/deficiência , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Regulação Enzimológica da Expressão Gênica , ATPase Trocadora de Hidrogênio-Potássio/classificação , ATPase Trocadora de Hidrogênio-Potássio/deficiência , ATPase Trocadora de Hidrogênio-Potássio/genética , Homeostase , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Potássio/urina , Potássio na Dieta/administração & dosagem
17.
J Am Soc Nephrol ; 23(6): 1019-26, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22440902

RESUMO

The circadian clock contributes to the control of BP, but the underlying mechanisms remain unclear. We analyzed circadian rhythms in kidneys of wild-type mice and mice lacking the circadian transcriptional activator clock gene. Mice deficient in clock exhibited dramatic changes in the circadian rhythm of renal sodium excretion. In parallel, these mice lost the normal circadian rhythm of plasma aldosterone levels. Analysis of renal circadian transcriptomes demonstrated changes in multiple mechanisms involved in maintaining sodium balance. Pathway analysis revealed the strongest effect on the enzymatic system involved in the formation of 20-HETE, a powerful regulator of renal sodium excretion, renal vascular tone, and BP. This correlated with a significant decrease in the renal and urinary content of 20-HETE in clock-deficient mice. In summary, this study demonstrates that the circadian clock modulates renal function and identifies the 20-HETE synthesis pathway as one of its principal renal targets. It also suggests that the circadian clock affects BP, at least in part, by exerting dynamic control over renal sodium handling.


Assuntos
Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Sódio/metabolismo , Aldosterona/análise , Aldosterona/sangue , Animais , Proteínas CLOCK/genética , Modelos Animais de Doenças , Homeostase/genética , Ácidos Hidroxieicosatetraenoicos/metabolismo , Capacidade de Concentração Renal , Túbulos Renais Coletores/metabolismo , Modelos Lineares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Sistema Renina-Angiotensina/fisiologia , Sensibilidade e Especificidade , Sódio/urina , Transcriptoma/genética
18.
Pflugers Arch ; 460(6): 925-52, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20686783

RESUMO

The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD; Zuber et al., Proc Natl Acad Sci USA 106:16523-16528, 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining the salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G-protein-coupled receptors or serine/threonine kinases exhibit high expression levels but remain unassigned to a specific renal function. We also established a list of genes differentially expressed between the DCT/CNT and the CCD. This list is enriched by genes related to segment-specific transport functions and by transcription factors directing the development of the distal nephron or collecting ducts. Collectively, this in silico analysis provides comprehensive information about relative abundance and tissue specificity of the DCT/CNT and the CCD expressed transcripts and identifies new candidate genes for renal homeostasis.


Assuntos
Perfilação da Expressão Gênica , Túbulos Renais Coletores/fisiologia , Túbulos Renais Distais/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Clatrina/genética , Proteínas do Citoesqueleto/genética , GTP Fosfo-Hidrolases/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , Proteínas Monoméricas de Ligação ao GTP/genética , Néfrons/fisiologia , Fosfolipases/genética , Fosfoproteínas Fosfatases/genética , Análise Serial de Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Acoplados a Proteínas G/genética , Proteínas SNARE/genética , Fatores de Transcrição/genética , Equilíbrio Hidroeletrolítico/genética
19.
Proc Natl Acad Sci U S A ; 106(38): 16523-8, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805330

RESUMO

Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e., distal convoluted tubule (DCT) and connecting tubule (CNT) and the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf, and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, alphaENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms, and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.


Assuntos
Relógios Biológicos/genética , Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Túbulos Renais/metabolismo , Animais , Aquaporina 2/genética , Aquaporina 4/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Pressão Sanguínea , Proteínas CLOCK , Proteínas de Ligação a DNA/genética , Eletrólitos/sangue , Capacidade de Concentração Renal , Túbulos Renais/fisiologia , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Tempo , Transativadores/genética , Fatores de Transcrição/genética , Urodinâmica
20.
Pflugers Arch ; 456(2): 407-12, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18040710

RESUMO

Despite the fact that mineralocorticoid receptor (MR) antagonist drugs such as spironolactone and eplerenone reduce the mortality in heart failure patients, there is, thus far, no unambiguous demonstration of a functional role of MR in cardiac cells. The aim of this work was to investigate the activation pathway(s) mediating corticosteroid-induced up-regulation of cardiac calcium current (ICa). In this study, using neonatal cardiomyocytes from MR or glucocorticoid receptor (GR) knockout (KO) mice, we show that MR is essential for corticosteroid-induced up-regulation of ICa. This study provides the first direct and unequivocal evidence for MR function in the heart.


Assuntos
Corticosteroides/metabolismo , Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Mineralocorticoides/metabolismo , Corticosteroides/farmacologia , Aldosterona/farmacologia , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/efeitos dos fármacos , Células Cultivadas , Corticosterona/farmacologia , Relação Dose-Resposta a Droga , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/efeitos dos fármacos , Receptores de Mineralocorticoides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...