Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 23(Suppl 9): 346, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982407

RESUMO

BACKGROUND: G-protein coupled receptors (GPCRs) sense and transmit extracellular signals into the intracellular machinery by regulating G proteins. GPCR malfunctions are associated with a variety of signaling-related diseases, including cancer and diabetes; at least a third of the marketed drugs target GPCRs. Thus, characterization of their signaling and regulatory mechanisms is crucial for the development of effective drugs. RESULTS: In this study, we developed a machine learning model to identify GPCR agonists and antagonists. We designed two-step prediction models: the first model identified the ligands binding to GPCRs and the second model classified the ligands as agonists or antagonists. Using 990 selected subset features from 5270 molecular descriptors calculated from 4590 ligands deposited in two drug databases, our model classified non-ligands, agonists, and antagonists of GPCRs, and achieved an area under the ROC curve (AUC) of 0.795, sensitivity of 0.716, specificity of 0.744, and accuracy of 0.733. In addition, we verified that 70% (44 out of 63) of FDA-approved GPCR-targeting drugs were correctly classified into their respective groups. CONCLUSIONS: Studies of ligand-GPCR interaction recognition are important for the characterization of drug action mechanisms. Our GPCR-ligand interaction prediction model can be employed in the pharmaceutical sciences for the efficient virtual screening of putative GPCR-binding agonists and antagonists.


Assuntos
Aprendizado de Máquina , Receptores Acoplados a Proteínas G , Área Sob a Curva , Ligantes , Receptores Acoplados a Proteínas G/metabolismo
2.
BMC Bioinformatics ; 20(Suppl 10): 250, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31138104

RESUMO

BACKGROUND: Drug candidates often cause an unwanted blockage of the potassium ion channel of the human ether-a-go-go-related gene (hERG). The blockage leads to long QT syndrome (LQTS), which is a severe life-threatening cardiac side effect. Therefore, a virtual screening method to predict drug-induced hERG-related cardiotoxicity could facilitate drug discovery by filtering out toxic drug candidates. RESULT: In this study, we generated a reliable hERG-related cardiotoxicity dataset composed of 2130 compounds, which were carried out under constant conditions. Based on our dataset, we developed a computational hERG-related cardiotoxicity prediction model. The neural network model achieved an area under the receiver operating characteristic curve (AUC) of 0.764, with an accuracy of 90.1%, a Matthews correlation coefficient (MCC) of 0.368, a sensitivity of 0.321, and a specificity of 0.967, when ten-fold cross-validation was performed. The model was further evaluated using ten drug compounds tested on guinea pigs and showed an accuracy of 80.0%, an MCC of 0.655, a sensitivity of 0.600, and a specificity of 1.000, which were better than the performances of existing hERG-toxicity prediction models. CONCLUSION: The neural network model can predict hERG-related cardiotoxicity of chemical compounds with a high accuracy. Therefore, the model can be applied to virtual high-throughput screening for drug candidates that do not cause cardiotoxicity. The prediction tool is available as a web-tool at http://ssbio.cau.ac.kr/CardPred .


Assuntos
Cardiotoxicidade/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Redes Neurais de Computação , Animais , Área Sob a Curva , Bases de Dados Genéticas , Canais de Potássio Éter-A-Go-Go/química , Cobaias , Humanos , Aprendizado de Máquina , Curva ROC
3.
BMC Bioinformatics ; 19(Suppl 8): 207, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29897324

RESUMO

BACKGROUND: Administered drugs are often converted into an ineffective or activated form by enzymes in our body. Conventional in silico prediction approaches focused on therapeutically important enzymes such as CYP450. However, there are more than thousands of different cellular enzymes that potentially convert administered drug into other forms. RESULT: We developed an in silico model to predict which of human enzymes including metabolic enzymes as well as CYP450 family can catalyze a given chemical compound. The prediction is based on the chemical and physical similarity between known enzyme substrates and a query chemical compound. Our in silico model was developed using multiple linear regression and the model showed high performance (AUC = 0.896) despite of the large number of enzymes. When evaluated on a test dataset, it also showed significantly high performance (AUC = 0.746). Interestingly, evaluation with literature data showed that our model can be used to predict not only enzymatic reactions but also drug conversion and enzyme inhibition. CONCLUSION: Our model was able to predict enzymatic reactions of a query molecule with a high accuracy. This may foster to discover new metabolic routes and to accelerate the computational development of drug candidates by enabling the prediction of the potential conversion of administered drugs into active or inactive forms.


Assuntos
Simulação por Computador , Enzimas/metabolismo , Algoritmos , Área Sob a Curva , Bases de Dados de Proteínas , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...