Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836801

RESUMO

In this work, applications of nanohybrid composites based on titanium dioxide (TiO2) with anatase crystallin phase and single-walled carbon nanohorns (SWCNHs) as promising catalysts for the photodegradation of amoxicillin (AMOX) are reported. In this order, TiO2/SWCNH composites were prepared by the solid-state interaction of the two chemical compounds. The increase in the SWCNH concentration in the TiO2/SWCNH composite mass, from 1 wt.% to 5 wt.% and 10 wt.% induces (i) a change in the relative intensity ratio of the Raman lines located at 145 and 1595 cm-1, which are attributed to the Eg(1) vibrational mode of TiO2 and the graphitic structure of SWCNHs; and (ii) a gradual increase in the IR band absorbance at 1735 cm-1 because of the formation of new carboxylic groups on the SWCNHs' surface. The best photocatalytic properties were obtained for the TiO2/SWCNH composite with a SWCNH concentration of 5 wt.%, when approx. 92.4% of AMOX removal was achieved after 90 min of UV irradiation. The TiO2/SWCNH composite is a more efficient catalyst in AMOX photodegradation than TiO2 as a consequence of the SWCNHs' presence, which acts as a capture agent for the photogenerated electrons of TiO2 hindering the electron-hole recombination. The high stability of the TiO2/SWCNH composite with a SWCNH concentration of 5 wt.% is proved by the reusing of the catalyst in six photodegradation cycles of the 98.5 µM AMOX solution, when the efficiency decreases from 92.4% up to 78%.

2.
Sci Rep ; 12(1): 9515, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680962

RESUMO

In this work, new optical evidences concerning the changes induced of the UV light on pantoprazole sodium (PS), in solid state and as aqueous solution, are reported by UV-VIS spectroscopy, photoluminescence (PL), Raman scattering and FTIR spectroscopy. New evidences concerning the products of the PS photodegradation pathways are reported by the correlated studies of thermogravimetry and mass spectrometry. The influence of the excipients and alkaline medium on the PS photodegradation is also studied. New aspects regarding the chemical mechanism of the PS photodegradation in the presence of the water vapor and oxygen form air and the alkaline medium are shown. Our results confirm that the PS photodegradation induced of the water vapors and oxygen from air leads to the generation of 5-difluoromethoxy-3H-benzimidazole-2-thione sodium, 5-difluoromethoxy-3H-benzimidazole sodium, 2-thiol methyl-3, 4-dimethoxypyridine and 2-hydroxymethyl-3, 4-dimethoxypyridine, while in the alkaline medium, compounds of the type of the 2-oxymethyl-3,4-dimethoxypyridine sodium salts are resulted.


Assuntos
Benzimidazóis , Sódio , Espectrometria de Massas , Oxigênio , Pantoprazol , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35455412

RESUMO

New aspects concerning the photodegradation (PD) of ampicillin are reported by photoluminescence (PL), Raman scattering and FTIR spectroscopy. The exposure of ampicillin in the absence (AM) and in the presence of the excipient (AMP) to UV light leads to an intensity diminution of the photoluminescence excitation (PLE) and photoluminescence (PL) spectra and the emergence of a new IR band at 3450 cm-1. The photoluminescence studies demonstrate that the AM PD is amplified in the presence of excipients and an alkaline medium. In this last case, the PD process of AM involves the emergence of new compounds, whose presence is highlighted by: (i) the emergence of the isosbestic point at 300 nm in the UV-VIS spectra; (ii) a change in the ratio between the absorbance of IR bands situated in the spectral ranges 1200-1660 and 3250-3450 cm-1; and (iii) a change in the ratio between the intensities of the Raman lines localized in the spectral ranges 1050-1800 and 2750-3100 cm-1. A chemical mechanism of the PD processes of AM in an alkaline medium is proposed.

4.
Nanomaterials (Basel) ; 10(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187318

RESUMO

The influence of Ag and Au nanoparticles and reduced graphene oxide (RGO) sheets on the photodegradation of α-lipoic acid (ALA) was determined by UV-VIS spectroscopy. The ALA photodegradation was explained by considering the affinity of thiol groups for the metallic nanoparticles synthesized in the presence of trisodium citrate. The presence of excipients did not induce further changes when ALA interacts with Ag and Au nanoparticles with sizes of 5 and 10 nm by exposure to UV light. Compared to the Raman spectrum of ALA powder, changes in Raman lines' position and relative intensities when ALA has interacted with films obtained from Au nanoparticles with sizes between 5 and 50 nm were significant. These changes were explained by considering the chemical mechanism of surface-enhanced Raman scattering (SERS) spectroscopy. The photodegradation of ALA that had interacted with metallic nanoparticles was inhibited in the presence of RGO sheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...