Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 109(4): 047401, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-23006106

RESUMO

In high-resolution resonant inelastic x-ray scattering at the Ti L edge of the charge-density-wave system 1T-TiSe(2), we observe sharp low energy loss peaks from electron-hole pair excitations developing at low temperature. These excitations are strongly dispersing as a function of the transferred momentum of light. We show that the unoccupied bands close to the Fermi level can effectively be probed in this broadband material. Furthermore, we extract the order parameter of the charge-density-wave phase from temperature-dependent measurements.

2.
Phys Rev Lett ; 106(10): 106404, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21469817

RESUMO

We address the lattice deformation of 1T-TiSe2 within the exciton condensate phase. We show that, at low temperature, condensed excitons influence the lattice through electron-phonon interaction. It is found that at zero temperature, in the exciton condensate phase of 1T-TiSe2, this exciton condensate exerts a force on the lattice generating ionic displacements comparable in amplitude to what is measured in experiment. This is thus the first quantitative estimation of the amplitude of the periodic lattice distortion observed in 1T-TiSe2 as a consequence of the exciton condensate phase.

3.
Phys Rev Lett ; 105(4): 047001, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20867876

RESUMO

The field-driven transition from an ordered Bragg glass to a disordered vortex phase in single-crystalline MgB2 is tuned by an increasing density of point defects, introduced by electron irradiation. The discontinuity observed in magnetization attests to the first-order nature of the transition. The temperature and defect density dependences of the transition field point to vortex pinning mediated by fluctuations in the quasiparticle mean free path, and reveal the mechanism of the transition in the absence of complicating factors such as layeredness or thermal fluctuations.

4.
Phys Rev Lett ; 99(14): 146403, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17930692

RESUMO

We present a new high-resolution angle-resolved photoemission study of 1T-TiSe2 in both its room-temperature, normal phase and its low-temperature, charge-density wave phase. At low temperature the photoemission spectra are strongly modified, with large band renormalizations at high-symmetry points of the Brillouin zone and a very large transfer of spectral weight to backfolded bands. A calculation of the theoretical spectral function for an excitonic insulator phase reproduces the experimental features with very good agreement. This gives strong evidence in favor of the excitonic insulator scenario as a driving force for the charge-density wave transition in 1T-TiSe2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...