Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(8): 083402, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457696

RESUMO

We report on laser cooling of a large fraction of positronium (Ps) in free flight by strongly saturating the 1^{3}S-2^{3}P transition with a broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is produced in a magnetic and electric field-free environment. We observe two different laser-induced effects. The first effect is an increase in the number of atoms in the ground state after the time Ps has spent in the long-lived 2^{3}P states. The second effect is one-dimensional Doppler cooling of Ps, reducing the cloud's temperature from 380(20) to 170(20) K. We demonstrate a 58(9)% increase in the fraction of Ps atoms with v_{1D}<3.7×10^{4} ms^{-1}.

2.
Phys Rev Lett ; 127(6): 063603, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420343

RESUMO

We demonstrate an optical method for detecting the mechanical oscillations of an atom with single-phonon sensitivity. The measurement signal results from the interference between the light scattered by a trapped atomic ion and that of its mirror image. We detect the oscillations of the atom in the Doppler cooling limit and reconstruct average trajectories in phase space. We demonstrate single-phonon sensitivity near the ground state of motion after electronically induced transparency cooling. These results could be applied for motion detection of other light scatterers of fundamental interest, such as trapped nanoparticles.

3.
Rev Sci Instrum ; 91(11): 113201, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261421

RESUMO

We present the design and construction of a new experimental apparatus for the trapping of single Ba+ ions in the center of curvature of an optical-quality hemispherical mirror. We describe the layout, fabrication, and integration of the full setup, consisting of a high-optical access monolithic "3D-printed" Paul trap, the hemispherical mirror, a diffraction-limited in-vacuum lens (NA = 0.7) for collection of atomic fluorescence, and a state-of-the art ultra-high vacuum vessel. This new apparatus enables the study of quantum electrodynamics effects such as strong inhibition and enhancement of spontaneous emission and achieves a collection efficiency of the emitted light in a single optical mode of 31%.

4.
Phys Rev Lett ; 123(10): 103201, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573306

RESUMO

We report the first cooling of atomic anions by laser radiation. O^{-} ions confined in a linear Paul trap were cooled by selectively photodetaching the hottest particles. For this purpose, anions with the highest total energy were illuminated with a 532 nm laser at their maximal radial excursion. Using laser-particle interaction, we realized a both colder and denser ion cloud, achieving a more than threefold temperature reduction from 1.15 to 0.33 eV. Compared with the interaction with a dilute buffer gas, the energy-selective addressing and removal of anions resulted in lower final temperatures, yet acted 10 times faster and preserved twice as large a fraction of ions in the final state. An ensemble of cold negative ions affords the ability to sympathetically cool any other negative ion species, enabling or facilitating a broad range of fundamental studies from interstellar chemistry to antimatter gravity. The technique can be extended to any negative ion species that can be neutralized via photodetachment.

5.
Phys Rev Lett ; 120(13): 133205, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694180

RESUMO

Experiments with antihydrogen (H[over ¯]) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H[over ¯] to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions-dominated by polarization and correlation effects-only few candidate systems with suitable transitions exist. We report on a combination of experimental and theoretical studies to fully determine the relevant binding energies, transition rates, and branching ratios of the most promising candidate La^{-}. Using combined transverse and collinear laser spectroscopy, we determined the resonant frequency of the laser cooling transition to be ν=96.592 713(91) THz and its transition rate to be A=4.90(50)×10^{4} s^{-1}. Using a novel high-precision theoretical treatment of La^{-} we calculated yet unmeasured energy levels, transition rates, branching ratios, and lifetimes to complement experimental information on the laser cooling cycle of La^{-}. The new data establish the suitability of La^{-} for laser cooling and show that the cooling transition is significantly stronger than suggested by a previous theoretical study.

6.
Philos Trans A Math Phys Eng Sci ; 376(2116)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29459413

RESUMO

The efficient production of cold antihydrogen atoms in particle traps at CERN's Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth's gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of g for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot-Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom. The antihydrogen formation mechanism chosen by AEgIS is resonant charge exchange between cold antiprotons and Rydberg positronium. A series of technical developments regarding positrons and positronium (Ps formation in a dedicated room-temperature target, spectroscopy of the n=1-3 and n=3-15 transitions in Ps, Ps formation in a target at 10 K inside the 1 T magnetic field of the experiment) as well as antiprotons (high-efficiency trapping of [Formula: see text], radial compression to sub-millimetre radii of mixed [Formula: see text] plasmas in 1 T field, high-efficiency transfer of [Formula: see text] to the antihydrogen production trap using an in-flight launch and recapture procedure) were successfully implemented. Two further critical steps that are germane mainly to charge exchange formation of antihydrogen-cooling of antiprotons and formation of a beam of antihydrogen-are being addressed in parallel. The coming of ELENA will allow, in the very near future, the number of trappable antiprotons to be increased by more than a factor of 50. For the antihydrogen production scheme chosen by AEgIS, this will be reflected in a corresponding increase of produced antihydrogen atoms, leading to a significant reduction of measurement times and providing a path towards high-precision measurements.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'.

7.
Phys Rev Lett ; 115(11): 113001, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26406825

RESUMO

The bound-bound transition from the 5d^{2}6s^{2} ^{3}F_{2}^{e} ground state to the 5d6s^{2}6p ^{3}D_{1}^{o} excited state in negative lanthanum has been proposed as a candidate for laser cooling, which has not yet been achieved for negative ions. Anion laser cooling holds the potential to allow the production of ultracold ensembles of any negatively charged species. We have studied the aforementioned transition in a beam of negative La ions by high-resolution laser spectroscopy. The center-of-gravity frequency was measured to be 96.592 80(10) THz. Seven of the nine expected hyperfine structure transitions were resolved. The observed peaks were unambiguously assigned to the predicted hyperfine transitions by a fit, confirmed by multiconfigurational self-consistent field calculations. From the determined hyperfine structure we conclude that La^{-} is a promising laser cooling candidate. Using this transition, only three laser beams would be required to repump all hyperfine levels of the ground state.

8.
Nat Commun ; 5: 4538, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25066810

RESUMO

The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics--the moiré deflectometer--for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter.

9.
Rev Sci Instrum ; 83(10): 106101, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126815

RESUMO

We present an implementation of the analysis of dynamic near field scattering (NFS) data using a graphics processing unit. We introduce an optimized data management scheme thereby limiting the number of operations required. Overall, we reduce the processing time from hours to minutes, for typical experimental conditions. Previously the limiting step in such experiments, the processing time is now comparable to the data acquisition time. Our approach is applicable to various dynamic NFS methods, including shadowgraph, Schlieren and differential dynamic microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...