Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Brain Struct Funct ; 229(4): 797-808, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38441643

RESUMO

AIM: Many authors have suggested that intimate partner violence (IPV) perpetrators present an imbalance between both branches of the autonomous nervous system when coping with acute stress. Concretely, there is a predominance of the sympathetic branches over the parasympathetic ones when recovering from stress. This imbalance can be explained by their tendency toward anger rumination, and more concretely, by their focus on thoughts of revenge during this period. Unfortunately, there is a gap in the scientific literature in terms of using magnetic resonance imaging (MRI) techniques to assess which brain structures would explain this tendency of IPV perpetrators when coping with acute stress. METHOD: The main objective of this study was to assess whether the gray matter volume (GMV) of relevant brain structures, signaled in previous scientific literature, moderates the association between thoughts of revenge and sympathetic activation during the recovery period, based on skin conductance levels (SCL) after being exposed to stress, in a group of IPV perpetrators (n = 58) and non-violent men (n = 61). RESULTS: This study highlighted that the GMV of the left nucleus accumbens, right lobules of the cerebellum, and inferior temporal gyrus in IPV perpetrators moderated the association between thoughts of revenge and SCL during the recovery period. Accordingly, the higher the thoughts of revenge, the higher the sympathetic predominance (or higher SCL levels), especially among IPV perpetrators with the lowest GMV of these brain structures. Nonetheless, those variables were unrelated in the control group. CONCLUSIONS: Our study highlights the involvement of certain brain structures and how they explain the tendency of some IPV perpetrators to ruminate anger or, more precisely, to focus on thoughts of revenge when they recover from acute stress. These results reinforce the need to incorporate neuroimaging techniques during screening processes to properly understand how IPV perpetrators deal with stress, which in turn helps target their needs and design concrete intervention modules.


Assuntos
Violência por Parceiro Íntimo , Masculino , Humanos , Ira , Encéfalo/diagnóstico por imagem , Estresse Psicológico , Capacidades de Enfrentamento
2.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396789

RESUMO

Pyridoxine (pyr) is a versatile molecule that forms part of the family of B vitamins. It is used to treat and prevent vitamin B6 deficiency and certain types of metabolic disorders. Moreover, the pyridoxine molecule has been investigated as a suitable ligand toward metal ions. Nevertheless, the study of the magnetic properties of metal complexes containing lanthanide(III) ions and this biomolecule is unexplored. We have synthesized and characterized a novel pyridoxine-based GdIII complex of formula [GdIII(pyr)2(H2O)4]Cl3 · 2 H2O (1) [pyr = pyridoxine]. 1 crystallizes in the triclinic system and space group Pi. In its crystal packing, cationic [Gd(pyr)2(H2O)4]3+ entities are connected through H-bonding interactions involving non-coordinating water molecules and chloride anions. In addition, Hirshfeld surfaces of 1 were calculated to further investigate their intermolecular interactions in the crystal lattice. Our investigation of the magnetic properties of 1, through ac magnetic susceptibility measurements, reveals the occurrence of a slow relaxation in magnetization in this mononuclear GdIII complex, indicating an unusual single-ion magnet (SIM) behavior for this pseudo-isotropic metal ion at very low temperatures. We also studied the relaxometric properties of 1, as a potential contrast agent for high-field magnetic resonance imaging (MRI), from solutions of 1 prepared in physiological serum (0.0-3.2 mM range) and measured at 3 T on a clinical MRI scanner. The values of relaxivity obtained for 1 are larger than those of some commercial MRI contrast agents based on mononuclear GdIII systems.


Assuntos
Gadolínio , Piridoxina , Gadolínio/química , Imãs , Imageamento por Ressonância Magnética/métodos , Íons
3.
Eur J Radiol ; 173: 111362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364590

RESUMO

PURPOSE: This article presents the design and validation of evaluation criteria checklist aimed at facilitating decision-making processes regarding participation in research projects and allocation of resources before the preparation of research proposals. MATERIALS AND METHODS: A multidisciplinary team developed a comprehensive evaluation focusing on the proposal preparation phase of research projects. A Delphi survey method was used to establish a connection between the relevance of the project and the possible success of research proposals. Assessment criteria were agreed upon, each assigned specific weights. The results of the survey were applied to a database of 62 proposals for which our research group sought funding during 2020-2021. The method was validated using the funding body's outcomes (approval or rejection) of the submitted proposals as the ground truth per project type (national, European and regional). RESULTS: The results of the survey generated a checklist of 8 criteria (excellence, impact, and efficiency aspects) that effectively assess the possibility of success of research proposals during the preparatory phase. For national projects, the tool validation demonstrated a sensitivity of 100% and a specificity of 76.19%; European projects exhibited a sensitivity of 100% and a specificity of 53.84%; and regional projects showed a sensitivity of 80% and a specificity of 30%. CONCLUSIONS: By establishing an agreed set of evaluation criteria, the developed comprehensive index enables a more precise decision support tool for the participation in research proposals and the allocation of necessary resources. This control system saves valuable time and effort for research groups while enhancing the overall efficiency of available resources.


Assuntos
Lista de Checagem , Alocação de Recursos , Humanos , Alocação de Recursos/métodos
4.
Sci Rep ; 14(1): 2472, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291063

RESUMO

To expand the scientific literature on how resting state functional connectivity (rsFC) magnetic resonance imaging (MRI) (or the measurement of the strength of the coactivation of two brain regions over a sustained period of time) can be used to explain treatment compliance and recidivism among intimate partner violence (IPV) perpetrators. Therefore, our first aim was to assess whether men convicted of IPV (n = 53) presented different rsFC patterns from a control group of non-violent (n = 47) men. We also analyzed if the rsFC of IPV perpetrators before staring the intervention program could explain treatment compliance and recidivism one year after the intervention ended. The rsFC was measured by applying a whole brain analysis during a resting period, which lasted 45 min. IPV perpetrators showed higher rsFC in the occipital brain areas compared to controls. Furthermore, there was a positive association between the occipital pole (OP) and temporal lobes (ITG) and a negative association between the occipital (e.g., occipital fusiform gyrus, visual network) and both the parietal lobe regions (e.g., supramarginal gyrus, parietal operculum cortex, lingual gyrus) and the putamen in IPV perpetrators. This pattern was the opposite in the control group. The positive association between many of these occipital regions and the parietal, frontal, and temporal regions explained treatment compliance. Conversely, treatment compliance was also explained by a reduced rsFC between the rostral prefrontal cortex and the frontal gyrus and both the occipital and temporal gyrus, and between the temporal and the occipital and cerebellum areas and the sensorimotor superior networks. Last, the enhanced rsFC between the occipital regions and both the cerebellum and temporal gyrus predicted recidivism. Our results highlight that there are specific rsFC patterns that can distinguish IPV perpetrators from controls. These rsFC patterns could be useful to explain treatment compliance and recidivism among IPV perpetrators.


Assuntos
Violência por Parceiro Íntimo , Reincidência , Masculino , Humanos , Encéfalo/diagnóstico por imagem , Lobo Occipital , Lobo Frontal , Imageamento por Ressonância Magnética/métodos
5.
Pediatr Radiol ; 54(4): 562-570, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37747582

RESUMO

This review paper presents the practical development of imaging biomarkers in the scope of the PRIMAGE (PRedictive In silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers) project, as a noninvasive and reliable way to improve the diagnosis and prognosis in pediatric oncology. The PRIMAGE project is a European multi-center research initiative that focuses on developing medical imaging-derived artificial intelligence (AI) solutions designed to enhance overall management and decision-making for two types of pediatric cancer: neuroblastoma and diffuse intrinsic pontine glioma. To allow this, the PRIMAGE project has created an open-cloud platform that combines imaging, clinical, and molecular data together with AI models developed from this data, creating a comprehensive decision support environment for clinicians managing patients with these two cancers. In order to achieve this, a standardized data processing and analysis workflow was implemented to generate robust and reliable predictions for different clinical endpoints. Magnetic resonance (MR) image harmonization and registration was performed as part of the workflow. Subsequently, an automated tool for the detection and segmentation of tumors was trained and internally validated. The Dice similarity coefficient obtained for the independent validation dataset was 0.997, indicating compatibility with the manual segmentation variability. Following this, radiomics and deep features were extracted and correlated with clinical endpoints. Finally, reproducible and relevant imaging quantitative features were integrated with clinical and molecular data to enrich both the predictive models and a set of visual analytics tools, making the PRIMAGE platform a complete clinical decision aid system. In order to ensure the advancement of research in this field and to foster engagement with the wider research community, the PRIMAGE data repository and platform are currently being integrated into the European Federation for Cancer Images (EUCAIM), which is the largest European cancer imaging research infrastructure created to date.


Assuntos
Inteligência Artificial , Neoplasias , Criança , Humanos , Radiômica , Prognóstico , Neoplasias/diagnóstico por imagem , Biomarcadores
6.
Cancers (Basel) ; 15(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36900410

RESUMO

OBJECTIVES: To externally validate and assess the accuracy of a previously trained fully automatic nnU-Net CNN algorithm to identify and segment primary neuroblastoma tumors in MR images in a large children cohort. METHODS: An international multicenter, multivendor imaging repository of patients with neuroblastic tumors was used to validate the performance of a trained Machine Learning (ML) tool to identify and delineate primary neuroblastoma tumors. The dataset was heterogeneous and completely independent from the one used to train and tune the model, consisting of 300 children with neuroblastic tumors having 535 MR T2-weighted sequences (486 sequences at diagnosis and 49 after finalization of the first phase of chemotherapy). The automatic segmentation algorithm was based on a nnU-Net architecture developed within the PRIMAGE project. For comparison, the segmentation masks were manually edited by an expert radiologist, and the time for the manual editing was recorded. Different overlaps and spatial metrics were calculated to compare both masks. RESULTS: The median Dice Similarity Coefficient (DSC) was high 0.997; 0.944-1.000 (median; Q1-Q3). In 18 MR sequences (6%), the net was not able neither to identify nor segment the tumor. No differences were found regarding the MR magnetic field, type of T2 sequence, or tumor location. No significant differences in the performance of the net were found in patients with an MR performed after chemotherapy. The time for visual inspection of the generated masks was 7.9 ± 7.5 (mean ± Standard Deviation (SD)) seconds. Those cases where manual editing was needed (136 masks) required 124 ± 120 s. CONCLUSIONS: The automatic CNN was able to locate and segment the primary tumor on the T2-weighted images in 94% of cases. There was an extremely high agreement between the automatic tool and the manually edited masks. This is the first study to validate an automatic segmentation model for neuroblastic tumor identification and segmentation with body MR images. The semi-automatic approach with minor manual editing of the deep learning segmentation increases the radiologist's confidence in the solution with a minor workload for the radiologist.

7.
Insights Imaging ; 14(1): 11, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645542

RESUMO

The use of artificial intelligence (AI) with medical images to solve clinical problems is becoming increasingly common, and the development of new AI solutions is leading to more studies and publications using this computational technology. As a novel research area, the use of common standards to aid AI developers and reviewers as quality control criteria will improve the peer review process. Although some guidelines do exist, their heterogeneity and extension advocate that more explicit and simple schemes should be applied on the publication practice. Based on a review of existing AI guidelines, a proposal which collects, unifies, and simplifies the most relevant criteria was developed. The MAIC-10 (Must AI Criteria-10) checklist with 10 items was implemented as a guide to design studies and evaluate publications related to AI in the field of medical imaging. Articles published in Insights into Imaging in 2021 were selected to calculate their corresponding MAIC-10 quality score. The mean score was found to be 5.6 ± 1.6, with critical items present in most articles, such as "Clinical need", "Data annotation", "Robustness", and "Transparency" present in more than 80% of papers, while improvements in other areas were identified. MAIC-10 was also observed to achieve the highest intra-observer reproducibility when compared to other existing checklists, with an overall reduction in terms of checklist length and complexity. In summary, MAIC-10 represents a short and simple quality assessment tool which is objective, robust and widely applicable to AI studies in medical imaging.

8.
Cancers (Basel) ; 14(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954314

RESUMO

Tumor segmentation is one of the key steps in imaging processing. The goals of this study were to assess the inter-observer variability in manual segmentation of neuroblastic tumors and to analyze whether the state-of-the-art deep learning architecture nnU-Net can provide a robust solution to detect and segment tumors on MR images. A retrospective multicenter study of 132 patients with neuroblastic tumors was performed. Dice Similarity Coefficient (DSC) and Area Under the Receiver Operating Characteristic Curve (AUC ROC) were used to compare segmentation sets. Two more metrics were elaborated to understand the direction of the errors: the modified version of False Positive (FPRm) and False Negative (FNR) rates. Two radiologists manually segmented 46 tumors and a comparative study was performed. nnU-Net was trained-tuned with 106 cases divided into five balanced folds to perform cross-validation. The five resulting models were used as an ensemble solution to measure training (n = 106) and validation (n = 26) performance, independently. The time needed by the model to automatically segment 20 cases was compared to the time required for manual segmentation. The median DSC for manual segmentation sets was 0.969 (±0.032 IQR). The median DSC for the automatic tool was 0.965 (±0.018 IQR). The automatic segmentation model achieved a better performance regarding the FPRm. MR images segmentation variability is similar between radiologists and nnU-Net. Time leverage when using the automatic model with posterior visual validation and manual adjustment corresponds to 92.8%.

9.
Inf Fusion ; 82: 99-122, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35664012

RESUMO

Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the computational data harmonisation approaches for multi-modality data in the digital healthcare field, including harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist that summarises common practices for data harmonisation studies is proposed to guide researchers to report their research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and metric selection are proposed and the limitations of different methods have been surveyed for future research.

10.
Eur Radiol Exp ; 6(1): 29, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35773546

RESUMO

A huge amount of imaging data is becoming available worldwide and an incredible range of possible improvements can be provided by artificial intelligence algorithms in clinical care for diagnosis and decision support. In this context, it has become essential to properly manage and handle these medical images and to define which metadata have to be considered, in order for the images to provide their full potential. Metadata are additional data associated with the images, which provide a complete description of the image acquisition, curation, analysis, and of the relevant clinical variables associated with the images. Currently, several data models are available to describe one or more subcategories of metadata, but a unique, common, and standard data model capable of fully representing the heterogeneity of medical metadata has not been yet developed. This paper reports the state of the art on metadata models for medical imaging, the current limitations and further developments, and describes the strategy adopted by the Horizon 2020 "AI for Health Imaging" projects, which are all dedicated to the creation of imaging biobanks.


Assuntos
Inteligência Artificial , Metadados , Algoritmos , Bancos de Espécimes Biológicos , Diagnóstico por Imagem/métodos
11.
Br J Radiol ; 95(1137): 20220072, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35687700

RESUMO

Patients with pancreatic ductal adenocarcinoma (PDAC) are generally classified into four categories based on contrast-enhanced CT at diagnosis: resectable, borderline resectable, unresectable, and metastatic disease. In the initial grading and staging of PDAC, structured radiological templates are useful but limited, as there is a need to define the aggressiveness and microscopic disease stage of these tumours to ensure adequate treatment allocation. Quantitative imaging analysis allows radiomics and dynamic imaging features to provide information of clinical outcomes, and to construct clinical models based on radiomics signatures or imaging phenotypes. These quantitative features may be used as prognostic and predictive biomarkers in clinical decision-making, enabling personalised management of advanced PDAC. Deep learning and convolutional neural networks also provide high level bioinformatics tools that can help define features associated with a given aspect of PDAC biology and aggressiveness, paving the way to define outcomes based on these features. Thus, the prediction of tumour phenotype, treatment response and patient prognosis may be feasible by using such comprehensive and integrated radiomics models. Despite these promising results, quantitative imaging is not ready for clinical implementation in PDAC. Limitations include the instability of metrics and lack of external validation. Large properly annotated datasets, including relevant semantic features (demographics, blood markers, genomics), image harmonisation, robust radiomics analysis, clinically significant tasks as outputs, comparisons with gold-standards (such as TNM or pretreatment classifications) and fully independent validation cohorts, will be required for the development of trustworthy radiomics and artificial intelligence solutions to predict PDAC aggressiveness in a clinical setting.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Inteligência Artificial , Carcinoma Ductal Pancreático/diagnóstico por imagem , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Prognóstico , Neoplasias Pancreáticas
12.
J Med Syst ; 46(8): 52, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713815

RESUMO

The purpose of this project is to develop and validate a Deep Learning (DL) FDG PET imaging algorithm able to identify patients with any neurodegenerative diseases (Alzheimer's Disease (AD), Frontotemporal Degeneration (FTD) or Dementia with Lewy Bodies (DLB)) among patients with Mild Cognitive Impairment (MCI). A 3D Convolutional neural network was trained using images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The ADNI dataset used for the model training and testing consisted of 822 subjects (472 AD and 350 MCI). The validation was performed on an independent dataset from La Fe University and Polytechnic Hospital. This dataset contained 90 subjects with MCI, 71 of them developed a neurodegenerative disease (64 AD, 4 FTD and 3 DLB) while 19 did not associate any neurodegenerative disease. The model had 79% accuracy, 88% sensitivity and 71% specificity in the identification of patients with neurodegenerative diseases tested on the 10% ADNI dataset, achieving an area under the receiver operating characteristic curve (AUC) of 0.90. On the external validation, the model preserved 80% balanced accuracy, 75% sensitivity, 84% specificity and 0.86 AUC. This binary classifier model based on FDG PET images allows the early prediction of neurodegenerative diseases in MCI patients in standard clinical settings with an overall 80% classification balanced accuracy.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Alzheimer/diagnóstico por imagem , Inteligência Artificial , Disfunção Cognitiva/diagnóstico por imagem , Fluordesoxiglucose F18 , Humanos , Doenças Neurodegenerativas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos
13.
Eur Radiol Exp ; 6(1): 22, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35641659

RESUMO

BACKGROUND: Estimating the required sample size is crucial when developing and validating clinical prediction models. However, there is no consensus about how to determine the sample size in such a setting. Here, the goal was to compare available methods to define a practical solution to sample size estimation for clinical predictive models, as applied to Horizon 2020 PRIMAGE as a case study. METHODS: Three different methods (Riley's; "rule of thumb" with 10 and 5 events per predictor) were employed to calculate the sample size required to develop predictive models to analyse the variation in sample size as a function of different parameters. Subsequently, the sample size for model validation was also estimated. RESULTS: To develop reliable predictive models, 1397 neuroblastoma patients are required, 1060 high-risk neuroblastoma patients and 1345 diffuse intrinsic pontine glioma (DIPG) patients. This sample size can be lowered by reducing the number of variables included in the model, by including direct measures of the outcome to be predicted and/or by increasing the follow-up period. For model validation, the estimated sample size resulted to be 326 patients for neuroblastoma, 246 for high-risk neuroblastoma, and 592 for DIPG. CONCLUSIONS: Given the variability of the different sample sizes obtained, we recommend using methods based on epidemiological data and the nature of the results, as the results are tailored to the specific clinical problem. In addition, sample size can be reduced by lowering the number of parameter predictors, by including direct measures of the outcome of interest.


Assuntos
Modelos Estatísticos , Neuroblastoma , Humanos , Neuroblastoma/diagnóstico por imagem , Prognóstico , Tamanho da Amostra
14.
Expert Opin Drug Discov ; 17(2): 167-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34807782

RESUMO

INTRODUCTION: Neuroblastoma is a cancer of the sympathetic nervous system that causes up to 15% of cancer-related deaths among children. Among the ~1,000 newly diagnosed cases per year in Europe, more than half are classified as high-risk, with a 5-year survival rate <50%. Current multimodal treatments have improved survival among these patients, but relapsed and refractory tumors remain a major therapeutic challenge. A number of new methodologies are paving the way for the development of more effective and safer therapies to ultimately improve outcomes for high-risk patients. AREAS COVERED: The authors provide a critical review on methodological advances aimed at providing new therapeutic opportunities for neuroblastoma patients, including preclinical models of human disease, generation of omics data to discover new therapeutic targets, and artificial intelligence-based technologies to implement personalized treatments. EXPERT OPINION: While survival of childhood cancer has improved over the past decades, progress has been uneven. Still, survival is dismal for some cancers, including high-risk neuroblastoma. Embracing new technologies (e.g. molecular profiling of tumors, 3D in vitro models, etc.), international collaborative efforts and the incorporation of new therapies (e.g. RNA-based therapies, epigenetic therapies, immunotherapy) will ultimately lead to more effective and safer therapies for these subgroups of neuroblastoma patients.


Assuntos
Inteligência Artificial , Neuroblastoma , Criança , Terapia Combinada , Humanos , Imunoterapia , Terapia de Alvo Molecular , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia
15.
J Digit Imaging ; 34(5): 1134-1145, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34505958

RESUMO

Several noise sources, such as the Johnson-Nyquist noise, affect MR images disturbing the visualization of structures and affecting the subsequent extraction of radiomic data. We evaluate the performance of 5 denoising filters (anisotropic diffusion filter (ADF), curvature flow filter (CFF), Gaussian filter (GF), non-local means filter (NLMF), and unbiased non-local means (UNLMF)), with 33 different settings, in T2-weighted MR images of phantoms (N = 112) and neuroblastoma patients (N = 25). Filters were discarded until the most optimal solutions were obtained according to 3 image quality metrics: peak signal-to-noise ratio (PSNR), edge-strength similarity-based image quality metric (ESSIM), and noise (standard deviation of the signal intensity of a region in the background area). The selected filters were ADFs and UNLMs. From them, 107 radiomics features preservation at 4 progressively added noise levels were studied. The ADF with a conductance of 1 and 2 iterations standardized the radiomic features, improving reproducibility and quality metrics.


Assuntos
Algoritmos , Diagnóstico por Imagem , Biomarcadores , Humanos , Reprodutibilidade dos Testes , Razão Sinal-Ruído
16.
Cancers (Basel) ; 12(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371218

RESUMO

BACKGROUND/AIM: In recent years, the apparent diffusion coefficient (ADC) has been used in many oncology applications as a surrogate marker of tumor cellularity and aggressiveness, although several factors may introduce bias when calculating this coefficient. The goal of this study was to develop a novel methodology (Fit-Cluster-Fit) based on confidence habitats that could be applied to quantitative diffusion-weighted magnetic resonance images (DWIs) to enhance the power of ADC values to discriminate between benign and malignant neuroblastic tumor profiles in children. METHODS: Histogram analysis and clustering-based algorithms were applied to DWIs from 33 patients to perform tumor voxel discrimination into two classes. Voxel uncertainties were quantified and incorporated to obtain a more reproducible and meaningful estimate of ADC values within a tumor habitat. Computational experiments were performed by smearing the ADC values in order to obtain confidence maps that help identify and remove noise from low-quality voxels within high-signal clustered regions. The proposed Fit-Cluster-Fit methodology was compared with two other methods: conventional voxel-based and a cluster-based strategy. RESULTS: The cluster-based and Fit-Cluster-Fit models successfully differentiated benign and malignant neuroblastic tumor profiles when using values from the lower ADC habitat. In particular, the best sensitivity (91%) and specificity (89%) of all the combinations and methods explored was achieved by removing uncertainties at a 70% confidence threshold, improving standard voxel-based sensitivity and negative predictive values by 4% and 10%, respectively. CONCLUSIONS: The Fit-Cluster-Fit method improves the performance of imaging biomarkers in classifying pediatric solid tumor cancers and it can probably be adapted to dynamic signal evaluation for any tumor.

17.
Eur Radiol Exp ; 4(1): 22, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246291

RESUMO

PRIMAGE is one of the largest and more ambitious research projects dealing with medical imaging, artificial intelligence and cancer treatment in children. It is a 4-year European Commission-financed project that has 16 European partners in the consortium, including the European Society for Paediatric Oncology, two imaging biobanks, and three prominent European paediatric oncology units. The project is constructed as an observational in silico study involving high-quality anonymised datasets (imaging, clinical, molecular, and genetics) for the training and validation of machine learning and multiscale algorithms. The open cloud-based platform will offer precise clinical assistance for phenotyping (diagnosis), treatment allocation (prediction), and patient endpoints (prognosis), based on the use of imaging biomarkers, tumour growth simulation, advanced visualisation of confidence scores, and machine-learning approaches. The decision support prototype will be constructed and validated on two paediatric cancers: neuroblastoma and diffuse intrinsic pontine glioma. External validation will be performed on data recruited from independent collaborative centres. Final results will be available for the scientific community at the end of the project, and ready for translation to other malignant solid tumours.


Assuntos
Inteligência Artificial , Biomarcadores/análise , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Glioma/diagnóstico por imagem , Glioma/terapia , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/terapia , Criança , Computação em Nuvem , Técnicas de Apoio para a Decisão , Progressão da Doença , Europa (Continente) , Feminino , Humanos , Masculino , Fenótipo , Prognóstico , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...