Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 795, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781912

RESUMO

Pentameric ligand-gated ion channel mediate signal transduction at chemical synapses by transiting between resting and open states upon neurotransmitter binding. Here, we investigate the gating mechanism of the glycine receptor fluorescently labeled at the extracellular-transmembrane interface by voltage-clamp fluorometry (VCF). Fluorescence reports a glycine-elicited conformational change that precedes pore opening. Low concentrations of glycine, partial agonists or specific mixtures of glycine and strychnine trigger the full fluorescence signal while weakly activating the channel. Molecular dynamic simulations of a partial agonist bound-closed Cryo-EM structure show a highly dynamic nature: a marked structural flexibility at both the extracellular-transmembrane interface and the orthosteric site, generating docking properties that recapitulate VCF data. This work illuminates a progressive propagating transition towards channel opening, highlighting structural plasticity within the mechanism of action of allosteric effectors.


Assuntos
Glicina , Receptores de Glicina , Receptores de Glicina/metabolismo , Glicina/farmacologia , Iluminação , Simulação de Dinâmica Molecular , Transdução de Sinais
2.
Sci Adv ; 8(41): eadc9340, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36240268

RESUMO

Glycine receptors (GlyRs) are ligand-gated ion channels mediating signal transduction at chemical synapses. Since the early patch-clamp electrophysiology studies, the details of the ion permeation mechanism have remained elusive. Here, we combine molecular dynamics simulations of a zebrafish GlyR-α1 model devoid of the intracellular domain with mutagenesis and single-channel electrophysiology of the full-length human GlyR-α1. We show that lateral fenestrations between subunits in the extracellular domain provide the main translocation pathway for chloride ions to enter/exit a central water-filled vestibule at the entrance of the transmembrane channel. In addition, we provide evidence that these fenestrations are at the origin of current rectification in known anomalous mutants and design de novo two inward-rectifying channels by introducing mutations within them. These results demonstrate the central role of lateral fenestrations on synaptic neurotransmission.

3.
Bioinformatics ; 36(11): 3379-3384, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163115

RESUMO

MOTIVATION: Glycine receptors (GlyRs) mediate fast inhibitory neurotransmission in the brain and have been recognized as key pharmacological targets for pain. A large number of chemically diverse compounds that are able to modulate GlyR function both positively and negatively have been reported, which provides useful information for the development of pharmacological strategies and models for the allosteric modulation of these ion channels. RESULTS: Based on existing literature, we have collected 218 unique chemical entities with documented modulatory activities at homomeric GlyR-α1 and -α3 and built a database named GRALL. This collection includes agonists, antagonists, positive and negative allosteric modulators and a number of experimentally inactive compounds. Most importantly, for a large fraction of them a structural annotation based on their putative binding site on the receptor is provided. This type of annotation, which is currently missing in other drug banks, along with the availability of cooperativity factors from radioligand displacement experiments are expected to improve the predictivity of in silico methodologies for allosteric drug discovery and boost the development of conformation-based pharmacological approaches. AVAILABILITY AND IMPLEMENTATION: The GRALL library is distributed as a web-accessible database at the following link: https://ifm.chimie.unistra.fr/grall. For each molecular entry, it provides information on the chemical structure, the ligand-binding site, the direction of modulation, the potency, the 3D molecular structure and quantum-mechanical charges as determined by our in-house pipeline. CONTACT: mcecchini@unistra.fr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Receptores de Glicina , Transmissão Sináptica , Regulação Alostérica , Sítios de Ligação , Biblioteca Gênica , Ligantes , Receptores de Glicina/metabolismo
4.
J Chem Inf Model ; 57(10): 2448-2462, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28922596

RESUMO

Given the difficulties to identify chemical probes that can modulate protein-protein interactions (PPIs), actors in the field have started to agree on the necessity to use PPI-tailored screening chemical collections. However, which type of scaffolds may promote the binding of compounds to PPI targets remains unclear. In this big data analysis, we have identified a list of privileged chemical substructures that are most often observed within inhibitors of PPIs. Using molecular frameworks as a way to perceive chemical substructures with the combination of an experimental and a machine-learning based predicted data set of iPPI compounds, we propose a list of privileged substructures in the form of scaffolds and chemical moieties that can be substantially chemically functionalized and do not present any toxicophore nor pan-assay interference (PAINS) alerts. We think that such chemical guidance will be valuable for medicinal chemists in their attempt to identify initial quality chemical probes on PPI targets.


Assuntos
Modelos Químicos , Proteínas/química , Aprendizado de Máquina , Estrutura Molecular , Bibliotecas de Moléculas Pequenas
5.
Proc Natl Acad Sci U S A ; 114(19): E3786-E3795, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28442564

RESUMO

Pore dilation is thought to be a hallmark of purinergic P2X receptors. The most commonly held view of this unusual process posits that under prolonged ATP exposure the ion pore expands in a striking manner from an initial small-cation conductive state to a dilated state, which allows the passage of larger synthetic cations, such as N-methyl-d-glucamine (NMDG+). However, this mechanism is controversial, and the identity of the natural large permeating cations remains elusive. Here, we provide evidence that, contrary to the time-dependent pore dilation model, ATP binding opens an NMDG+-permeable channel within milliseconds, with a conductance that remains stable over time. We show that the time course of NMDG+ permeability superimposes that of Na+ and demonstrate that the molecular motions leading to the permeation of NMDG+ are very similar to those that drive Na+ flow. We found, however, that NMDG+ "percolates" 10 times slower than Na+ in the open state, likely due to a conformational and orientational selection of permeating molecules. We further uncover that several P2X receptors, including those able to desensitize, are permeable not only to NMDG+ but also to spermidine, a large natural cation involved in ion channel modulation, revealing a previously unrecognized P2X-mediated signaling. Altogether, our data do not support a time-dependent dilation of the pore on its own but rather reveal that the open pore of P2X receptors is wide enough to allow the permeation of large organic cations, including natural ones. This permeation mechanism has considerable physiological significance.


Assuntos
Permeabilidade da Membrana Celular , Glutamatos/metabolismo , Modelos Biológicos , Receptores Purinérgicos P2X/metabolismo , Espermidina/metabolismo , Células HEK293 , Humanos
6.
Sci Rep ; 6: 23815, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27034268

RESUMO

Protein-protein interactions (PPIs) play vital roles in life and provide new opportunities for therapeutic interventions. In this large data analysis, 3,300 inhibitors of PPIs (iPPIs) were compared to 17 reference datasets of collectively ~566,000 compounds (including natural compounds, existing drugs, active compounds on conventional targets, etc.) using a chemoinformatics approach. Using this procedure, we showed that comparable classes of PPI targets can be formed using either the similarity of their ligands or the shared properties of their binding cavities, constituting a proof-of-concept that not only can binding pockets be used to group PPI targets, but that these pockets certainly condition the properties of their corresponding ligands. These results demonstrate that matching regions in both chemical space and target space can be found. Such identified classes of targets could lead to the design of PPI-class-specific chemical libraries and therefore facilitate the development of iPPIs to the stage of drug candidates.


Assuntos
Análise de Componente Principal , Ligação Proteica/efeitos dos fármacos , Simulação por Computador , Conjuntos de Dados como Assunto , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Peso Molecular , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA