Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Wellcome Open Res ; 8: 131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577055

RESUMO

Background: Ongoing research of the mosquito microbiome aims to uncover novel strategies to reduce pathogen transmission. Sequencing costs, especially for metagenomics, are however still significant. A resource that is increasingly used to gain insights into host-associated microbiomes is the large amount of publicly available genomic data based on whole organisms like mosquitoes, which includes sequencing reads of the host-associated microbes and provides the opportunity to gain additional value from these initially host-focused sequencing projects. Methods: To analyse non-host reads from existing genomic data, we developed a snakemake workflow called MINUUR (Microbial INsights Using Unmapped Reads). Within MINUUR, reads derived from the host-associated microbiome were extracted and characterised using taxonomic classifications and metagenome assembly followed by binning and quality assessment. We applied this pipeline to five publicly available Aedes aegypti genomic datasets, consisting of 62 samples with a broad range of sequencing depths. Results: We demonstrate that MINUUR recovers previously identified phyla and genera and is able to extract bacterial metagenome assembled genomes (MAGs) associated to the microbiome. Of these MAGS, 42 are high-quality representatives with >90% completeness and <5% contamination. These MAGs improve the genomic representation of the mosquito microbiome and can be used to facilitate genomic investigation of key genes of interest. Furthermore, we show that samples with a high number of KRAKEN2 assigned reads produce more MAGs. Conclusions: Our metagenomics workflow, MINUUR, was applied to a range of Aedes aegypti genomic samples to characterise microbiome-associated reads. We confirm the presence of key mosquito-associated symbionts that have previously been identified in other studies and recovered high-quality bacterial MAGs. In addition, MINUUR and its associated documentation are freely available on GitHub and provide researchers with a convenient workflow to investigate microbiome data included in the sequencing data for any applicable host genome of interest.

2.
Nat Commun ; 14(1): 4946, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587104

RESUMO

Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of malaria control, but the genetics of resistance are only partially understood. We performed a large scale multi-country genome-wide association study of resistance to two widely used insecticides: deltamethrin and pirimiphos-methyl, using sequencing data from An. gambiae and An. coluzzii from ten locations in West Africa. Resistance was highly multi-genic, multi-allelic and variable between populations. While the strongest and most consistent association with deltamethrin resistance came from Cyp6aa1, this was based on several independent copy number variants (CNVs) in An. coluzzii, and on a non-CNV haplotype in An. gambiae. For pirimiphos-methyl, signals included Ace1, cytochrome P450s, glutathione S-transferases and the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes showed evidence of cross-resistance to both insecticides. These locally-varying, multi-allelic patterns highlight the challenges involved in genomic monitoring of resistance, and may form the basis for improved surveillance methods.


Assuntos
Anopheles , Inseticidas , Piretrinas , Animais , Anopheles/genética , Inseticidas/farmacologia , Estudo de Associação Genômica Ampla , Organofosfatos/farmacologia , Piretrinas/farmacologia
3.
Open Forum Infect Dis ; 10(Suppl 1): S38-S46, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37274533

RESUMO

The global response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic demonstrated the value of timely and open sharing of genomic data with standardized metadata to facilitate monitoring of the emergence and spread of new variants. Here, we make the case for the value of Salmonella Typhi (S. Typhi) genomic data and demonstrate the utility of freely available platforms and services that support the generation, analysis, and visualization of S. Typhi genomic data on the African continent and more broadly by introducing the Africa Centres for Disease Control and Prevention's Pathogen Genomics Initiative, SEQAFRICA, Typhi Pathogenwatch, TyphiNET, and the Global Typhoid Genomics Consortium.

4.
bioRxiv ; 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36712022

RESUMO

Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of the most widespread tools currently used to control malaria. The genetic underpinnings of resistance are still only partially understood, with much of the variance in resistance phenotype left unexplained. We performed a multi-country large scale genome-wide association study of resistance to two insecticides widely used in malaria control: deltamethrin and pirimiphos-methyl. Using a bioassay methodology designed to maximise the phenotypic difference between resistant and susceptible samples, we sequenced 969 phenotyped female An. gambiae and An. coluzzii from ten locations across four countries in West Africa (Benin, Côte d'Ivoire, Ghana and Togo), identifying single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) segregating in the populations. The patterns of resistance association were highly multiallelic and variable between populations, with different genomic regions contributing to resistance, as well as different mutations within a given region. While the strongest and most consistent association with deltamethrin resistance came from the region around Cyp6aa1 , this resistance was based on a combination of several independent CNVs in An. coluzzii , and on a non-CNV bearing haplotype in An. gambiae . Further signals involved a range of cytochrome P450, mitochondrial, and immunity genes. Similarly, for pirimiphos-methyl, while the strongest signal came from the region of Ace1 , more widespread signals included cytochrome P450s, glutathione S-transferases, and a subunit of the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes were associated with resistance to both insecticide classes, suggesting possible cross-resistance mechanisms. These locally-varying, multigenic and multiallelic patterns highlight the challenges involved in genomic monitoring and surveillance of resistance, and form the basis for improvement of methods used to detect and predict resistance. Based on simulations of resistance variants, we recommend that yet larger scale studies, exceeding 500 phenotyped samples per population, are required to better identify associated genomic regions.

5.
Braz J Infect Dis ; 26(6): 102706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36228665

RESUMO

Acquired antibiotic resistance in bacteria has become an important worldwide challenge. Currently, several bacteria, including Escherichia coli, have multidrug resistance profiles. Genes such as bla CTX-M-24 and bla KPC-2 (carbapenemase) are widespread. This research letter reports about a genomic surveillance study where multidrug-resistant E. coli containing CTX-M-24(IncF [F-:A1:B32]) and KPC-2(IncX3/IncU) plasmids were obtained from community- acquired urinary tract infection in Brazil.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Brasil , Plasmídeos/genética , beta-Lactamases/genética , Infecções por Escherichia coli/microbiologia , Antibacterianos/farmacologia
6.
Front Med (Lausanne) ; 9: 931379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966843

RESUMO

Chryseobacterium indologenes is a non-glucose-fermenting Gram-negative bacillus. This emerging multidrug resistant opportunistic nosocomial pathogen can cause severe infections in neonates and immunocompromised patients. This study aimed to present the first detailed draft genome sequence of a multidrug-resistant C. indologenes strain isolated from the cerebrospinal fluid of an infant hospitalized at the Neonatal Intensive Care Unit of Brazilian Tertiary Hospital. We first analyzed the susceptibility of C. indologenes strain to different antibiotics using the VITEK 2 system. The strain demonstrated an outstanding resistance to all the antibiotic classes tested, including ß-lactams, aminoglycosides, glycylcycline, and polymyxin. Next, C. indologenes was whole-genome-sequenced, annotated using Prokka and Rapid Annotation using Subsystems Technology (RAST), and screened for orthologous groups (EggNOG), gene ontology (GO), resistance genes, virulence genes, and mobile genetic elements using different software tools. The draft genome contained one circular chromosome of 4,836,765 bp with 37.32% GC content. The genomic features of the chromosome present numerous genes related to cellular processes that are essential to bacteria. The MDR C. indologenes revealed the presence of genes that corresponded to the resistance phenotypes, including genes to ß-lactamases (bla IND-13, bla CIA-3, bla TEM-116, bla OXA-209, bla VEB-15), quinolone (mcbG), tigecycline (tet(X6)), and genes encoding efflux pumps which confer resistance to aminoglycosides (RanA/RanB), and colistin (HlyD/TolC). Amino acid substitutions related to quinolone resistance were observed in GyrA (S83Y) and GyrB (L425I and K473R). A mutation that may play a role in the development of colistin resistance was detected in lpxA (G68D). Chryseobacterium indologenes isolate harbored 19 virulence factors, most of which were involved in infection pathways. We identified 13 Genomic Islands (GIs) and some elements associated with one integrative and conjugative element (ICEs). Other elements linked to mobile genetic elements (MGEs), such as insertion sequence (ISEIsp1), transposon (Tn5393), and integron (In31), were also present in the C. indologenes genome. Although plasmids were not detected, a ColRNAI replicon type and the most resistance genes detected in singletons were identified in unaligned scaffolds. We provided a wide range of information toward the understanding of the genomic diversity of C. indologenes, which can contribute to controlling the evolution and dissemination of this pathogen in healthcare settings.

7.
Sci Rep ; 12(1): 9354, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672430

RESUMO

During a microbiological and genomic surveillance study conducted to investigate the molecular epidemiology of extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli from community-acquired urinary tract infections (UTI) and commercial meat samples, in a Brazilian city with a high occurrence of infections by ESBL-producing bacteria, we have identified the presence of CTX-M (-2, -14, -15, -24, -27 and -55)-producing E. coli of international clones ST38, ST117, ST131 and ST354. The ST131 was more prevalent in human samples, and worryingly the high-risk ST131-C1-M27 was identified in human infections for the first time. We also detected CTX-M-55-producing E. coli ST117 from meat samples (i.e., chicken and pork) and human infections. Moreover, the clinically relevant CTX-M-24-positive E. coli ST354 clone was detected for the first time in human samples. In summary, our results highlight a potential of commercialized meat as a reservoir of high-priority E. coli lineages in the community, whereas the identification of E. coli ST131-C1-M27 indicates that novel pandemic clones have emerged in Brazil, constituting a public health issue.


Assuntos
Infecções Comunitárias Adquiridas , Infecções por Escherichia coli , Antibacterianos , Brasil/epidemiologia , Células Clonais , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Genômica , Humanos , Carne , beta-Lactamases/genética
9.
Microb Genom ; 8(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35416146

RESUMO

Linear plasmids are extrachromosomal DNA elements that have been found in a small number of bacterial species. To date, the only linear plasmids described in the family Enterobacteriaceae belong to Salmonella, first found in Salmonella enterica Typhi. Here, we describe a collection of 12 isolates of the Klebsiella pneumoniae species complex in which we identified linear plasmids. Screening of assembly graphs assembled from public read sets identified linear plasmid structures in a further 13 K. pneumoniae species complex genomes. We used these 25 linear plasmid sequences to query all bacterial genome assemblies in the National Center for Biotechnology Information database, and discovered an additional 61 linear plasmid sequences in a variety of Enterobacteriaceae species. Gene content analysis divided these plasmids into five distinct phylogroups, with very few genes shared across more than two phylogroups. The majority of linear plasmid-encoded genes are of unknown function; however, each phylogroup carried its own unique toxin-antitoxin system and genes with homology to those encoding the ParAB plasmid stability system. Passage in vitro of the 12 linear plasmid-carrying Klebsiella isolates in our collection (which include representatives of all five phylogroups) indicated that these linear plasmids can be stably maintained, and our data suggest they can transmit between K. pneumoniae strains (including members of globally disseminated multidrug-resistant clones) and also between diverse Enterobacteriaceae species. The linear plasmid sequences, and representative isolates harbouring them, are made available as a resource to facilitate future studies on the evolution and function of these novel plasmids.


Assuntos
Klebsiella , beta-Lactamases , Antibacterianos , Klebsiella/genética , Klebsiella pneumoniae/genética , Plasmídeos/genética , beta-Lactamases/genética
10.
Arch Microbiol ; 204(4): 202, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244778

RESUMO

Klebsiella pneumoniae is an opportunistic pathogen that can cause several infections, mainly in hospitalised or immunocompromised individuals. The spread of K. pneumoniae emerging virulent and multidrug-resistant clones is a worldwide concern and its identification is crucial to control these strains especially in hospitals. This article reports data related to multi-resistant K. pneumoniae strains, isolated from inpatients in the city of Manaus, Brazil, harbouring virulence and antimicrobial-resistance genes, including high-risk international clones belonging to clonal group (CG) 258. Twenty-one strains isolated from different patients admitted to four hospitals in the city of Manaus, located in the state of Amazonas, Northern Brazil (Amazon Rainforest region) were evaluated. The majority of strains (61.9% n = 13) were classified as multidrug-resistant (MDR), and five strains (23.8%) as extensively drug-resistant (XDR). Several virulence and antimicrobial-resistance genes were found among the strains and eight strains (38.1%) presented the hyper-mucoviscous phenotype. MLST analysis demonstrated a great diversity of STs among the strains, totaling 12 different STs (ST11, ST23, ST198, ST277, ST307, ST340, ST378, ST462, ST502, ST3991, ST3993 and ST5209). Three of these (ST11, ST23 and ST340) belong to CG258.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Brasil/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Infecções por Klebsiella/epidemiologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Estudos Retrospectivos , beta-Lactamases/genética
11.
Microbiol Spectr ; 10(2): e0125621, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35234515

RESUMO

The dissemination of carbapenem-resistant and third generation cephalosporin-resistant pathogens is a critical issue that is no longer restricted to hospital settings. The rapid spread of critical priority pathogens in Brazil is notably worrying, considering its continental dimension, the diversity of international trade, livestock production, and human travel. We conducted a nationwide genomic investigation under a One Health perspective that included Escherichia coli strains isolated from humans and nonhuman sources, over 45 years (1974-2019). One hundred sixty-seven genomes were analyzed extracting clinically relevant information (i.e., resistome, virulome, mobilome, sequence types [STs], and phylogenomic). The endemic status of extended-spectrum ß-lactamase (ESBL)-positive strains carrying a wide diversity of blaCTX-M variants, and the growing number of colistin-resistant isolates carrying mcr-type genes was associated with the successful expansion of international ST10, ST38, ST115, ST131, ST354, ST410, ST648, ST517, and ST711 clones; phylogenetically related and shared between human and nonhuman hosts, and polluted aquatic environments. Otherwise, carbapenem-resistant ST48, ST90, ST155, ST167, ST224, ST349, ST457, ST648, ST707, ST744, ST774, and ST2509 clones from human host harbored blaKPC-2 and blaNDM-1 genes. A broad resistome to other clinically relevant antibiotics, hazardous heavy metals, disinfectants, and pesticides was further predicted. Wide virulome associated with invasion/adherence, exotoxin and siderophore production was related to phylogroup B2. The convergence of wide resistome and virulome has contributed to the persistence and rapid spread of international high-risk clones of critical priority E. coli at the human-animal-environmental interface, which must be considered a One Health challenge for a post-pandemic scenario. IMPORTANCE A One Health approach for antimicrobial resistance must integrate whole-genome sequencing surveillance data of critical priority pathogens from human, animal and environmental sources to track hot spots and routes of transmission and developing effective prevention and control strategies. As part of the Grand Challenges Explorations: New Approaches to Characterize the Global Burden of Antimicrobial Resistance Program, we present genomic data of WHO critical priority carbapenemase-resistant, ESBL-producing, and/or colistin-resistant Escherichia coli strains isolated from humans and nonhuman sources in Brazil, a country with continental proportions and high levels of antimicrobial resistance. The present study provided evidence of epidemiological and clinical interest, highlighting that the convergence of wide virulome and resistome has contributed to the persistence and rapid spread of international high-risk clones of E. coli at the human-animal-environmental interface, which must be considered a One Health threat that requires coordinated actions to reduce its incidence in humans and nonhuman hosts.


Assuntos
Infecções por Escherichia coli , Saúde Única , Animais , Antibacterianos/farmacologia , Brasil/epidemiologia , Carbapenêmicos/farmacologia , Colistina , Comércio , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Genômica , Internacionalidade , Testes de Sensibilidade Microbiana , Pandemias , Organização Mundial da Saúde , beta-Lactamases/genética
12.
Braz J Microbiol ; 53(1): 251-254, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35032310

RESUMO

Hemodialysis patients are at high risk for bloodstream infections associated with highest morbidity and mortality rates. Bacterial species not commonly related to such infections has been hardly identified by traditional methods. Pseudocitrobacter is a novel genus of the order Enterobacterales that is associated with carbapenemase genes and nosocomial infection. In this context, we have investigated nine cases of bloodstream infections by carbapenem-resistant Gram-negative bacilli in patients assisted at a hemodialysis unit in Brazil. The infections were caused by a metallo-ß-lactamase (IMP-1)-producing clone (> 90% XbaI-PFGE similarity) of Pseudocitrobacter vendiensis, displaying a multidrug-resistant profile to broad-spectrum cephalosporins, carbapenems, chloramphenicol, and trimethoprim-sulfamethoxazole. S1-PFGE and Southern blot hybridization revealed that blaIMP-1 was carried by a 200-kb IncC/ST3 plasmid. Patients were successfully treated with amikacin, and strict disinfection procedures and hand washing protocols were reinforced. We report the emergence of P. vendiensis, a recently described species of the genus, in bloodstream infections of patients undergoing hemodialysis. Considering the epidemic potential of carbapenemase-producing Enterobacterales in hospital settings, surveillance of this emerging pathogen is of utmost importance.


Assuntos
Carbapenêmicos , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , beta-Lactamases/genética , Carbapenêmicos/farmacologia , Enterobacteriaceae , Unidades Hospitalares de Hemodiálise , Testes de Sensibilidade Microbiana , Diálise Renal
13.
Microb Drug Resist ; 28(2): 171-179, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34698586

RESUMO

The increasing prevalence and dissemination of carbapenemase-producing Enterobacterales represent a serious concern for public health. We studied the genetic features of a multidrug-resistant isolate of high-risk clone ST147 Klebsiella pneumoniae coharboring mcr-1 and blaNDM-1 recovered from a human clinical urine sample in 2017 in Peru. Whole-genome sequencing and conjugation assays identified mcr-1 and blaNDM-1 genes on two different conjugative plasmids, which belong to IncI2 and IncFIB/HI1B incompatibility groups, respectively. The presence of blaCTX-M-15 (in the studied isolate, located on the chromosome) and mutations in GyrA S83I and ParC S80I were detected, as expected for ST147. In addition, other ß-lactamases (blaTEM-26 and blaOXA-1) and PMQR (qnrE2 and aac(6')-Ib-cr) among several resistance determinants were identified. The coexistence not previously described of these genes in the same high-risk clone is a cause for serious concern that supports the need for implementation of genomic surveillance studies.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Peru , Sequenciamento Completo do Genoma , beta-Lactamases/genética
14.
Infect Genet Evol ; 97: 105148, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801753

RESUMO

WGS-based surveillance has significantly improved the ability to track global spread and emergence of multidrug-resistant clones of clinically relevant pathogens. In this study, we performed the genomic characterization and comparative analysis of an Acinetobacter baumannii (strain Ac56) belonging to the sequence type ST374, which was isolated for the first time in Brazil, in 1996. Genomic analysis of Ac56 predicted a total of 5373 genes, with 3012 being identical across nine genomes of A. baumannii isolates of ST374 from European, Asian, North and South American countries. GoeBURST analysis grouped ST374 lineages into clonal complex CC3 (international clone IC-III). Resistome analysis of ST374 clone predicted genes associated with resistance to heavy metals and clinically relevant beta-lactams and aminoglycosides antibiotics. In this regard, in two closely related A. baumannii strains, the intrinsic blaADC gene was linked to the insertion sequence ISAba1; including the Ac56 strain, where it has been possibly associated with intermediate susceptibility to meropenem. Other four carbapenem-resistant A. baumannii strains carried the ISAba1/blaOXA-23 gene array, which was associated with the transposon Tn2008 or with Tn2006 in an AbaR4-type resistance island. While most virulence genes were shared for A. baumannii strains of ST374, three isolates from Thailand harbored KL49 capsular loci, previously identified in the hypervirulent A. baumannii LAC-4 strain. Analysis of thirty-four predicted plasmids showed eight major groups, of which GR-6 (LN-1) and GR-2 (LN-2) were prevalent. All strains, including the earliest isolate Ac56 harbored at least one complete prophage, whereas none CRISPR-associated (cas) gene was detected. In summary, genomic data of A. baumannii ST374 reveal a potential of this lineage to become a successful clone.


Assuntos
Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/genética , Infecções por Acinetobacter/microbiologia , Genoma Bacteriano , Humanos
15.
Braz. j. infect. dis ; 26(6): 102706, 2022. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420721

RESUMO

ABSTRACT Acquired antibiotic resistance in bacteria has become an important worldwide challenge. Currently, several bacteria, including Escherichia coli, have multidrug resistance profiles. Genes such as bla CTX-M-24 and bla KPC-2 (carbapenemase) are widespread. This research letter reports about a genomic surveillance study where multidrug-resistant E. coli containing CTX-M-24(IncF [F-:A1:B32]) and KPC-2(IncX3/IncU) plasmids were obtained from community- acquired urinary tract infection in Brazil.

16.
Genome Biol ; 22(1): 266, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521459

RESUMO

While long-read sequencing allows for the complete assembly of bacterial genomes, long-read assemblies contain a variety of errors. Here, we present Trycycler, a tool which produces a consensus assembly from multiple input assemblies of the same genome. Benchmarking showed that Trycycler assemblies contained fewer errors than assemblies constructed with a single tool. Post-assembly polishing further reduced errors and Trycycler+polishing assemblies were the most accurate genomes in our study. As Trycycler requires manual intervention, its output is not deterministic. However, we demonstrated that multiple users converge on similar assemblies that are consistently more accurate than those produced by automated assembly tools.


Assuntos
Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software , Sequência Consenso
17.
Pathog Dis ; 79(8)2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34550351

RESUMO

Emergent hypervirulent Klebsiella pneumoniae has been responsible for severe diseases, representing a serious threat to public health. We report the whole-genome sequencing of a novel ST3994-K2 clone, a single locus variant of ST86 K2, which is considered a worrying hypervirulent clone that emerged in several parts of the world. The strain K. pneumonia Kpi144 was isolated in 2013 from a blood culture of a 69-year-old male patient admitted to a tertiary hospital in Teresina, state of Piauí, northeastern Brazil. The strain was susceptible to 41 antibiotics tested, presented hypermucoviscous phenotype and a virulent behavior was observed in the Galleria mellonella infection model. Moreover, the virulome showed several virulence genes. To the best of our knowledge, this is the first worldwide report of a novel ST3994-K2 K. pneumoniae clone, an SLV of ST86 K2, which is considered a worrying virulent clone that has emerged in several parts of the world, including South America and Brazil.


Assuntos
Fenômenos Fisiológicos Bacterianos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/fisiologia , Genoma Bacteriano , Genômica/métodos , Humanos , Klebsiella pneumoniae/classificação , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Fenótipo , Filogenia , Virulência/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
18.
Nat Commun ; 12(1): 4188, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234121

RESUMO

Klebsiella pneumoniae is a leading cause of antimicrobial-resistant (AMR) healthcare-associated infections, neonatal sepsis and community-acquired liver abscess, and is associated with chronic intestinal diseases. Its diversity and complex population structure pose challenges for analysis and interpretation of K. pneumoniae genome data. Here we introduce Kleborate, a tool for analysing genomes of K. pneumoniae and its associated species complex, which consolidates interrogation of key features of proven clinical importance. Kleborate provides a framework to support genomic surveillance and epidemiology in research, clinical and public health settings. To demonstrate its utility we apply Kleborate to analyse publicly available Klebsiella genomes, including clinical isolates from a pan-European study of carbapenemase-producing Klebsiella, highlighting global trends in AMR and virulence as examples of what could be achieved by applying this genomic framework within more systematic genomic surveillance efforts. We also demonstrate the application of Kleborate to detect and type K. pneumoniae from gut metagenomes.


Assuntos
Proteínas de Bactérias/genética , Infecção Hospitalar/microbiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Tipagem Molecular/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecção Hospitalar/diagnóstico , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/epidemiologia , Conjuntos de Dados como Assunto , Farmacorresistência Bacteriana Múltipla/genética , Monitoramento Epidemiológico , Microbioma Gastrointestinal/genética , Genoma Bacteriano , Humanos , Lactente , Recém-Nascido , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/patogenicidade , Metagenoma/genética , Epidemiologia Molecular/métodos , Mutação , Filogenia , Software , Virulência/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma , beta-Lactamases/genética
19.
Nat Commun ; 12(1): 2684, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976138

RESUMO

Shigella sonnei is the most common agent of shigellosis in high-income countries, and causes a significant disease burden in low- and middle-income countries. Antimicrobial resistance is increasingly common in all settings. Whole genome sequencing (WGS) is increasingly utilised for S. sonnei outbreak investigation and surveillance, but comparison of data between studies and labs is challenging. Here, we present a genomic framework and genotyping scheme for S. sonnei to efficiently identify genotype and resistance determinants from WGS data. The scheme is implemented in the software package Mykrobe and tested on thousands of genomes. Applying this approach to analyse >4,000 S. sonnei isolates sequenced in public health labs in three countries identified several common genotypes associated with increased rates of ciprofloxacin resistance and azithromycin resistance, confirming intercontinental spread of highly-resistant S. sonnei clones and demonstrating the genomic framework can facilitate monitoring the spread of resistant clones, including those that have recently emerged, at local and global scales.


Assuntos
Disenteria Bacilar/diagnóstico , Genoma Bacteriano/genética , Genômica/métodos , Shigella sonnei/genética , Antibacterianos/farmacologia , Austrália , Azitromicina/farmacologia , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Disenteria Bacilar/microbiologia , Inglaterra , Genética Populacional , Genótipo , Geografia , Saúde Global , Humanos , Testes de Sensibilidade Microbiana/métodos , Filogenia , Polimorfismo de Nucleotídeo Único , Shigella sonnei/classificação , Shigella sonnei/fisiologia , Estados Unidos , Sequenciamento Completo do Genoma
20.
Front Microbiol ; 12: 604031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935984

RESUMO

Klebsiella variicola is mainly associated with opportunistic infections and frequently identified as Klebsiella pneumoniae. This misidentification implies a wrong epidemiology result as well as incorrect attribution to K. pneumoniae as the etiology of some severe infections. Recently, huge efforts have been made to study K. variicola, however, the biological aspects of this species are still unclear. Here we characterized five K. variicola strains initially identified as K. pneumoniae, with a Vitek-2 System and 16S rRNA sequencing. One-step multiplex polymerase chain reaction and Whole Genome Sequencing (WGS) identified them as K. variicola. Additionally, WGS analysis showed that all the strains are closely related with K. variicola genomes, forming a clustered group, apart from K. pneumoniae and K. quasipneumoniae. Multilocus sequence typing analysis showed four different sequence types (STs) among the strains and for two of them (Kv97 and Kv104) the same ST was assigned. All strains were multidrug-resistant (MDR) and three showed virulence phenotypes including invasion capacity to epithelial cells, and survival in human blood and serum. These results showed the emergence of new K. variicola clones with pathogenic potential to colonize and cause infection in different tissues. These characteristics associated with MDR strains raise great concern for human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...