Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 243: 125298, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31731135

RESUMO

Ryegrass (Lolium perenne L.) is a plant species that can express mechanisms of tolerance to copper (Cu) toxicity. Therefore, the agronomical approach of intercropping system with ryegrass may represent a promising tool to limit the onset of Cu toxicity symptoms in the other intercropped plants species, particularly when an inadequate nutrient availability like iron (Fe) shortage is also concurrently present. This study aimed at assessing the mechanisms involved in the mitigation of Cu phytotoxicity and the stress effects on plant growth, root morphology and nutrition of ryegrass fertilized with two different Fe sources. To this purpose, seedlings of ryegrass were hydroponically grown for 14 days in controlled conditions with 4 different levels of Cu (0.2, 5.0, 25 and 50 µM) and with either 100 µM Fe-EDDHA or Fe-EDTA. Results show that high levels of Cu availability enhanced the root content of organic anions as well as the root exudation. Different Fe fertilizations at the condition of 50 µM Cu induced changes in root phenolic compounds, citrate and fumarate contents and the exudation pattern of phenolic compounds. Differences in plant growth were not observed between the two Fe sources, although Cu concentration in plant tissue fed with Fe-EDTA was lower in the condition of 50 µM Cu. The enhanced root exudation of Cu-complexing organic compounds (including phenolics) in ryegrass plants when exposed to excessive Cu availability could be at the basis of the ameliorated edaphic rhizosphere conditions (lower Cu availability). For this reason, from the agronomical point of view ryegrass plants used in intercropping systems with crops like vine plants could represent a promising strategy to control Cu toxicity in vineyard soils. Further studies under the field conditions must be taken to support present findings.


Assuntos
Agricultura/métodos , Cobre/toxicidade , Fertilizantes , Poluentes do Solo/toxicidade , Produtos Agrícolas , Fazendas , Ferro/química , Ferro/farmacologia , Lolium/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Rizosfera , Plântula/química , Solo , Poluentes do Solo/análise
2.
Chemosphere ; 216: 147-156, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30366268

RESUMO

Intercropping may be a strategy for phytoremediation of vineyard soils with high copper (Cu) content. The study aimed to evaluate the contribution of South American native grasses in limiting Cu availability and toxicity in soils grown with grapevines. The soil used in the experiment was collected in natural grassland with no history of cultivation. The samples were air-dried; acidity, P and K levels were corrected and samples were then incubated. We used three Cu levels - natural content (Dose 0) and the addition of 40 and 80 mg Cu kg-1 of soil (Dose 40 and 80). At each Cu dose, grapevine was grown in three cropping treatments: monocropping, intercropping with Paspalum plicatulum and intercropping with Axonopus affinis. In intercropping, two grass seedlings were transplanted into each experimental unit 35 days prior to the transplanting of the grapevines. The soil solution was sampled and ionic speciation was carried out. At 70 days after planting, we sampled the grapevines to determine dry matter, morphological parameters and nutrient concentration in the roots and shoots. Intercropping young grapevines with Paspalum plicatulum and Axonopus affinis was efficient in promoting the growth of young grapevines at moderate and low levels of Cu contamination by reducing Cu bioavailability. This indicates that maintaining native grasses in young vineyards is an effective strategy for phytoremediating Cu-contaminated soils and obtaining a grape production system with reduced interventions in the native environment, in addition to contributing to soil protection and nutrient cycling.


Assuntos
Biodegradação Ambiental , Cobre/toxicidade , Produtos Agrícolas/crescimento & desenvolvimento , Fazendas , Solo , Poaceae/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Vitis/crescimento & desenvolvimento
3.
Ecotoxicol Environ Saf ; 163: 19-27, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031941

RESUMO

Copper based pesticides are used to protect vineyards from fungal infections. Plants like black oats (Avena strigosa Schreb) can promote chemical changes in the rhizosphere, reducing copper (Cu) bioavailability in contaminated soils. The objective of this study was to evaluate how copper additions would affect growth, morphology and nutrient uptake by black oats and how the plants affect the chemical composition in rhizosphere and bulk soil. The soil was collected in grassland of southern Brazil. The soil was air-dried, adjusted pH and added phosphorus and potassium amendments, and then it was incubated. Three Cu levels were established in the soil with the addition of 0, 40 and 80 mg Cu kg-1. The experimental design consisted of pots containing 8 plants with 10 kg of soil. Rhizosphere (2 kg of soil) and bulk (8 kg of soil) separated by a 30 µm nylon membrane. Black oat plants were grown for 54 days. The soil and solution were chemically characterized throughout cultivation for Cu speciation. At 54 days after emergence, the soil was sampled and proceeded chemical analysis and plants were collected to determine yield dry matter, morphological parameters and nutrient concentration. Black oat plants induce increase of pH and dissolved organic carbon in the rhizosphere. These root-induced processes increase the percentage of complexed chemical species and decrease free Cu+2 in soil solution, decreasing Cu toxicity. However, soil contamination with Cu induces morphological changes and nutritional imbalances. Black oats could thus be planted along with vineyards, for such increasing protect the soil and promote nutrient cycling, as well as reduce the free Cu available fraction due to the root-induced modifications in the rhizosphere.


Assuntos
Avena/efeitos dos fármacos , Cobre/toxicidade , Poluentes do Solo/toxicidade , Avena/crescimento & desenvolvimento , Avena/metabolismo , Biodegradação Ambiental , Disponibilidade Biológica , Brasil , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rizosfera , Solo/química
5.
Plant Physiol Biochem ; 126: 152-162, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29524802

RESUMO

Soil contamination with copper (Cu)-based agrochemicals used in vineyards for pest control is a growing problem. In this context, the application of soil amendment to limit Cu toxicity, especially for young plants after the replanting of vineyards, has been a concern for winemakers. Therefore, the aim of this study was to evaluate how different amendments can contribute to the decrease in Cu availability in areas vocated to viticulture. Furthermore, the aim was to evaluate to the effect of Cu on the biochemical and physiological changes in the development of the young vine plants, both at the shoot and the root level. Vine plants were grown in a greenhouse using a Typic Hapludalf soil characterized by 87.5 mg of Cu kg-1 (control). Three different amendments were applied to the soil: limestone (3 Mg ha-1), calcium silicate (3 Mg ha-1) and vermicompost (30 g of C kg-1). The amendment with vermicompost and calcium silicate caused a significant alkalization of the soil solution. Moreover, specifically for the treatment with vermicompost, the levels of Cu2+ in the soil solution were consistently diminished with a clear benefit for plants (+89% biomass accumulation at the shoot level). In addition, this soil amendment led to a higher photosynthetic rate, lower superoxide dismutase (SOD, EC 1.15.1.1) and guaiacol peroxidase (POD, EC 1.11.1.7) activity and a higher percentage of fine roots with diameter between 0 < L ≥ 0.2 mm (particularly active in water and nutrient acquisition). In conclusion, results showed that vermicompost effectively reduced Cu phytotoxicityin young vines grown in soils with high Cu contents. Furthermore, this amendment might be an asset in enhancing the availability of other important micronutrients such as iron.


Assuntos
Compostos de Cálcio/farmacologia , Cobre , Fazendas , Silicatos/farmacologia , Solo , Vitis/crescimento & desenvolvimento
6.
Plant Physiol Biochem ; 106: 253-63, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27209215

RESUMO

Vineyard sandy acid soils from South Brazil have experienced heavy metal contamination due to replacement of copper (Cu)-based by zinc (Zn)-based products to control foliar diseases. Thus, we evaluate physiological and nutritional status of black oat (Avena strigosa Schreb.), a common interrow crop in vineyards from this region. Soil was collected in a natural field from Santana do Livramento, in Rio Grande do Sul, the southernmost state of Brazil. Black oat was cultivated for 30 days in a greenhouse with application of 0, 30, and 60 mg Cu kg(-1) combined with 0, 15, 30, 60, 120, and 180 mg Zn kg(-1). After the trial period, dry matter accumulation of roots and shoots, Cu and Zn contents in roots and shoots, chlorophyll a fluorescence, photosynthetic pigments and catalase (CAT, EC 1.11.1.6) and peroxidase (POD, EC 1.11.1.7) activity were determined. Cu and Zn toxicity was evidenced by the decrease in plant growth of black oat as well as by the decrease of photochemical efficiency associated with the decrease in photosynthetic pigment content, especially with the highest doses of Cu and Zn. Furthermore, the activity of antioxidant enzymes (CAT and POD) was increased in intermediate doses of Zn, indicating the activation of the antioxidant system, but the stress condition in treatments with high levels of Cu and Zn was not reversed.


Assuntos
Avena/crescimento & desenvolvimento , Avena/fisiologia , Cobre/farmacologia , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Solo/química , Zinco/farmacologia , Análise de Variância , Antioxidantes/metabolismo , Avena/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Biomassa , Catalase/metabolismo , Clorofila/metabolismo , Clorofila A , Transporte de Elétrons/efeitos dos fármacos , Fluorescência , Peroxidase/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo
7.
Plant Physiol Biochem ; 103: 199-207, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27002244

RESUMO

Soils used for the cultivation of grapes generally have a long history of copper (Cu) based fungicide applications. As a result, these soils can accumulate Cu at levels that are capable of causing toxicity in plants that co-inhabit the vineyards. The aim of the present study was to evaluate growth parameters and oxidative stress in black oat plants grown in vineyard soils contaminated with high levels of Cu. Soil samples were collected from the Serra Gaúcha and Campanha Gaúcha regions, which are the main wine producing regions in the state of Rio Grande do Sul, in southern Brazil. Experiments were conducted in a greenhouse in 2009, with soils containing Cu concentrations from 2.2 to 328.7 mg kg(-1). Evaluated parameters included plant root and shoot dry matter, Cu concentration in the plant's tissues, and enzymatic and non-enzymatic biochemical parameters related to oxidative stress in the shoots of plants harvested 15 and 40 days after emergence. The Cu absorbed by plants predominantly accumulated in the roots, with little to no translocation to the shoots. Even so, oat plants showed symptoms of toxicity when grown in soils containing high Cu concentrations. The enzymatic and non-enzymatic antioxidant systems of oat plants were unable to reverse the imposed oxidative stress conditions.


Assuntos
Avena/efeitos dos fármacos , Cobre/farmacologia , Fungicidas Industriais/farmacologia , Poluentes do Solo/farmacologia , Antioxidantes/metabolismo , Avena/química , Avena/fisiologia , Brasil , Cobre/metabolismo , Fungicidas Industriais/metabolismo , Especificidade de Órgãos , Estresse Oxidativo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Solo/química , Poluentes do Solo/metabolismo , Vitis
8.
Ecotoxicol Environ Saf ; 129: 109-19, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27011111

RESUMO

The occurrence of high levels of Cu in vineyard soils is often the result of intensive use of fungicides for the preventive control of foliar diseases and can cause toxicity to plants. Nowadays many grape growers in Southern Brazil have replaced Cu-based with Zn-based products. The aim of the study was to evaluate whether the increase in Zn concentration in a soil with high Cu contents can interfere with the dynamics of these elements, and if this increase in Zn may cause toxicity to maize (Zea mays L.). Soil samples were collected in two areas, one in a vineyard with more than 30 years of cultivation and high concentration of Cu and the other on a natural grassland area adjacent to the vineyard. Different doses of Cu and Zn were added to the soil, and the adsorption isotherms were built following the Langmuir's model. In a second experiment, the vineyard soil was spiked with different Zn concentrations (0, 30, 60, 90, 180, and 270mg Zn kg(-1)) in 3kg pots where maize was grown in a greenhouse for 35 days. When Cu and Zn were added together, there was a reduction in the quantities adsorbed, especially for Zn. Zn addition decreased the total plant dry matter and specific leaf mass. Furthermore, with the increase in the activity of catalase, an activation of the antioxidant system was observed. However, the system was not sufficiently effective to reverse the stress levels imposed on soil, especially in plants grown in the highest doses of Zn. At doses higher than 90Znmgkg(-1) in the Cu-contaminated vineyard soil, maize plants were no longer able to activate the protection mechanism and suffered from metal stress, resulting in suppressed dry matter yields due to impaired functioning of the photosynthetic apparatus and changes in the enzymatic activity of plants. Replacement of Cu- by Zn-based fungicides to avoid Cu toxicity has resulted in soil vineyards contaminated with these metals and damaging of plant photosynthetic apparatus and enzyme activity.


Assuntos
Cobre , Poluentes do Solo , Zea mays/efeitos dos fármacos , Zinco , Adsorção , Brasil , Cobre/química , Cobre/toxicidade , Fazendas , Fungicidas Industriais , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Solo/química , Poluentes do Solo/química , Poluentes do Solo/toxicidade , Vitis , Zea mays/crescimento & desenvolvimento , Zinco/química , Zinco/toxicidade
9.
Environ Monit Assess ; 186(12): 9051-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25245214

RESUMO

Grapevines grown on acid soils with low fertility in southern Brazil are treated with intense foliar applications of copper (Cu) fungicides, resulting in an increased level of Cu in the soil and increased toxicity. The present study evaluated the accumulation and bioavailability of Cu, and soils with varying levels of Cu from the main producing regions of southern Brazil were collected. The forms of Cu present in the soil were assessed using chemical extractants; additionally, oat cultivation was performed, reflecting the use of the plant as an indicator of Cu bioavailability. Cu accumulated in the topsoil, mainly in bioavailable forms, and there was also an increase of Cu up to a depth of 0.4 m. Cu was primarily found in the mineral fraction, with apparent saturation of the soil organic matter functional groups. Inceptisol and Alfisol soils with a long history of cupric fungicide application were found to have levels of Cu toxic to oat plants. Furthermore, accumulated copper in Alfisol soil from the Campanha Gaúcha region of the state of Rio Grande do Sul had higher bioavailability compared to Cu accumulated in Inceptisol soil from the Serra Gaúcha region. In addition, the copper concentration in roots was found to serve as an indicator of Cu bioavailability in soil, but not of copper phytotoxicity in plants.


Assuntos
Cobre/análise , Monitoramento Ambiental , Poluentes do Solo/análise , Solo/química , Avena , Brasil , Poluição Ambiental , Fungicidas Industriais , Raízes de Plantas/efeitos dos fármacos
10.
Ecotoxicol Environ Saf ; 93: 145-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23669342

RESUMO

The present study investigated changes in both the growth parameters and the enzymatic and non-enzymatic antioxidant systems of maize (Zea may L.) plants grown in Typic Hapludalf soil containing an accumulation of Cu and Zn. This accumulation developed because the soil received nineteen applications of pig slurry in no-tillage system over seven years. In this study, the maize plants were grown for fifteen and 25 days after emergence (DAE) in pots containing undisturbed and disturbed soil samples collected from a field experiment that received the rates 0, 20, 40 and 80m(3)ha(-1) of pig slurry, which totalized the amount of 0, 380, 760 and 1520m(3)ha(-1) of pig slurry in seven years, respectively, and phosphorus (P)+potassium (K) treatment (in disturbed soil samples). The maize plants grown in the undisturbed soil samples with an accumulation of Cu and Zn did not indicate an apparent decrease in growth. However, when compared to the treatment with PK fertilization, the maize plants grown in the disturbed soil with pig slurry treatments indicated higher lipid peroxidation and a number of senescent leaves, as well as a significant decrease in plant height. Additionally, when compared to the PK treatment, the leaf superoxide dismutase and ascorbate peroxidase activities decreased and increased, respectively, with the addition of pig slurry treatments in the disturbed soil at 25 DAE. In general, when compared to the treatments with 20m(3)ha(-1) of pig slurry and PK at fifteen and 25 DAE, the leaf ascorbic acid and non-protein thiol groups concentrations decreased with the addition of 40 and 80m(3)ha(-1) of pig slurry. This result suggests that the excess of Cu and Zn in the pig slurry significantly changed the antioxidant system of the maize plants.


Assuntos
Cobre/toxicidade , Esterco , Poluentes do Solo/toxicidade , Zea mays/fisiologia , Zinco/toxicidade , Criação de Animais Domésticos , Animais , Ácido Ascórbico/metabolismo , Cobre/metabolismo , Monitoramento Ambiental , Folhas de Planta/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Superóxido Dismutase/metabolismo , Suínos , Eliminação de Resíduos Líquidos/métodos , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...