Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(29): 12319-12332, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37434462

RESUMO

The pursuit of new catalysts for the aqueous transformation of biomass-derived compounds under mild conditions is an active area of research. In the present work, the selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-bishydroxymethylfuran (BHMF) was efficiently accomplished in water at 25 °C and 5 bar H2 pressure (after 1 h full conversion and 100% selectivity). For this, a novel nanocatalyst based on graphene-supported Pt NPs decorated with Sn-butyl fragments (-SnBun) has been used. More specifically, Pt NPs supported on reduced graphene oxide (rGO) were functionalized with different equivalents (0.2, 0.5, 0.8 and 1 equiv.) of tributyltin hydride (Bu3SnH) following a surface organometallic chemistry (SOMC) approach. The synthesized catalysts (Pt@rGO/Snx) were fully characterized by state-of-the-art techniques, confirming the presence of Sn-butyl fragments grafted on the platinum surface. The higher the amount of surface -SnBun, the higher the activity of the catalyst, reaching a maximum conversion with Pt@rGO/Sn0.8. Indeed, the latter has proven to be one of the most active catalysts reported to date for the aqueous hydrogenation of HMF to BHMF (estimated TOF = 666.7 h-1). Furthermore, Pt@rGO/Sn0.8 has been demonstrated to be an efficient catalyst for the reduction of other biomass-derived compounds in water, such as furfural, vanillin or levoglucosenone. Here, the catalytic activity is remarkably boosted by Sn-butyl fragments located on the platinum surface, giving a catalyst several times faster than non-functionalized Pt@rGO.

2.
Chem Sci ; 13(44): 13046-13059, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425494

RESUMO

The search for new ligands capable of modifying the metal nanoparticle (MNP) catalytic behavior is of increasing interest. Herein we present the first example of RuNPs stabilized with non-planar heptagon-containing saddle-shaped nanographenes (Ru@1 and Ru@2). The resemblance to graphene-supported MNPs makes these non-planar nanographene-stabilized RuNPs very attractive systems to further investigate graphene-metal interactions. A combined theoretical/experimental study allowed us to explore the coordination modes and dynamics of these nanographenes at the Ru surface. The curvature of these saddle-shaped nanographenes makes them efficient MNP stabilizers. The resulting RuNPs were found to be highly active catalysts for the hydrogenation of aromatics, including platform molecules derived from biomass (i.e. HMF) or liquid organic hydrogen carriers (i.e. N-indole). A significant ligand effect was observed since a minor modification on the hept-HBC structure (C[double bond, length as m-dash]CH2 instead of C[double bond, length as m-dash]O) was reflected in a substantial increase in the MNP activity. Finally, the stability of these canopied RuNPs was investigated by multiple addition experiments, proving to be stable catalysts for at least 96 h.

3.
ACS Catal ; 12(14): 8462-8475, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37528952

RESUMO

The development of energetically efficient processes for the aqueous reduction of biomass-derived compounds into chemicals is key for the optimal transformation of biomass. Herein we report an early example of the reduction of biomass-derived oxygenated compounds in water by magnetically induced catalysis. Non-coated and carbon-coated core-shell FeCo@Ni magnetic nanoparticles were used as the heating agent and the catalyst simultaneously. In this way it was possible to control the product distribution by adjusting the field amplitude applied during the magnetic catalysis, opening a precedent for this type of catalysis. Finally, the encapsulation of the magnetic nanoparticles in carbon (FeCo@Ni@C) strongly improved the stability of the magnetic catalyst in solution, making its reuse possible up to at least eight times in dioxane and four times in water.

4.
ACS Appl Nano Mater ; 3(7): 7076-7087, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32743352

RESUMO

Magnetically induced catalysis using magnetic nanoparticles (MagNPs) as heating agents is a new efficient method to perform reactions at high temperatures. However, the main limitation is the lack of stability of the catalysts operating in such harsh conditions. Normally, above 500 °C, significant sintering of MagNPs takes place. Here we present encapsulated magnetic FeCo and Co NPs in carbon (Co@C and FeCo@C) as an ultrastable heating material suitable for high-temperature magnetic catalysis. Indeed, FeCo@C or a mixture of FeCo@C:Co@C (2:1) decorated with Ni or Pt-Sn showed good stability in terms of temperature and catalytic performances. In addition, consistent conversions and selectivities regarding conventional heating were observed for CO2 methanation (Sabatier reaction), propane dehydrogenation (PDH), and propane dry reforming (PDR). Thus, the encapsulation of MagNPs in carbon constitutes a major advance in the development of stable catalysts for high-temperature magnetically induced catalysis.

5.
Dalton Trans ; 47(34): 11909-11916, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-29951663

RESUMO

We report the synthesis and characterization of the first fluorescent oxalato-based canted antiferromagnet. Compound [DOC][MnFe(C2O4)3] (1) (DOC = 3,3'-diethyloxacarbocyanine) combines the well-known canted antiferromagnetic [MnFe(C2O4)3]- honeycomb layers with a fluorescent cationic cyanine-type fluorescent dye. Besides the expected spin canted antiferromagnetic order in the oxalato layer at ca. 29 K, we show the key role played by the anionic oxalato lattice in the optical properties of the cation since it provides isolation of dye cations in the hexagonal cavities of the oxalato-based matrix. The emission of the DOC+ dye shows a redshift and a broadening of the emission as well as an increase in the lifetime compared to the emission of the DOC+ cations in solution. These facts are attributed to the isolation effect of the oxalato-based matrix.

6.
Dalton Trans ; 47(19): 6729-6741, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29713717

RESUMO

We show the key role that the size and shape of the solvent molecules may play in the dimensionality and structure of a series of lanthanoid-chloranilato coordination polymers. We report the synthesis, structure and magnetic properties of six different coordination polymers prepared with Er(iii) and chloranilato (C6O4Cl22- = 3,6-dichloro-2,5-dihydroxy-1,4-benzoquinone) and six different solvents: [Er2(C6O4Cl2)3(H2O)6]·10H2O (1), [Er2(C6O4Cl2)3(FMA)6]·4FMA·2H2O (2) (FMA = formamide = NH2CHO), [Er2(C6O4Cl2)3(DMSO)4]·2DMSO·2H2O (3) (DMSO = dimethy sulfoxide = Me2SO), [Er2(C6O4Cl2)3(DMF)6] (4) (DMF = dimethylformamide = Me2NCHO), [Er2(C6O4Cl2)3(DMA)4] (5) (DMA = dimethylacetamide = Me2NC(Me)O) and [Er2(C6O4Cl2)3(HMPA)(H2O)3]·H2O (6) (HMPA = hexamethylphosphormamide = (Me2N)3PO). We show how the different solvent molecules modulate and determine important structural parameters such as the coordination number and geometry, the shape and distortions of the cavities, the presence of solvent molecules in these cavities, the interlayer space and even the dimensionality of the structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...