Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2794: 141-155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630226

RESUMO

Human-induced pluripotent stem cell (hiPSC) technology has enabled comprehensive human cell-based disease modeling in vitro. Due to limited accessibility of primary human neurons as well as species-specific divergence between human and rodent brain tissues, hiPSC-derived neurons have become a popular tool for studying neuronal biology in a dish. Here, we provide methods for transcription factor-driven directed differentiation of neurons from hiPSCs via a neural progenitor cell (NPC) intermediate. Doxycycline-inducible expression of neuron fate-determining transcription factors neurogenin 2 (NGN2) and achaete-scute homolog 1 (ASCL1) enables rapid and controllable differentiation of human neurons for disease modeling applications. The provided method is also designed to improve the reproducibility of human neuron differentiation by reducing the batch-to-batch variation of NPC differentiation and lentiviral transduction.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças do Sistema Nervoso , Humanos , Reprodutibilidade dos Testes , Neurônios , Diferenciação Celular , Fatores de Transcrição/genética
2.
Signal Transduct Target Ther ; 9(1): 112, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670977

RESUMO

The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.


Assuntos
COVID-19 , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Reprogramação Celular/genética , SARS-CoV-2/genética , Diferenciação Celular/genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patologia , Medicina Regenerativa , Doenças do Sistema Nervoso/terapia , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia
3.
Trends Pharmacol Sci ; 45(1): 24-38, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103979

RESUMO

The epitranscriptomics field has undergone tremendous growth since the discovery that the RNA N6-methyladenosine (m6A) modification is reversible and is distributed throughout the transcriptome. Efforts to map RNA modifications transcriptome-wide and reshape the epitranscriptome in disease settings have facilitated mechanistic understanding and drug discovery in the field. In this review we discuss recent advancements in RNA modification detection methods and consider how these developments can be applied to gain novel insights into the epitranscriptome. We also highlight drug discovery efforts aimed at developing epitranscriptomic therapeutics for cancer and other diseases. Finally, we consider engineering of the epitranscriptome as an emerging direction to investigate RNA modifications and their causal effects on RNA processing at high specificity.


Assuntos
Neoplasias , RNA , Humanos , RNA/genética , Transcriptoma , Neoplasias/tratamento farmacológico , Neoplasias/genética
4.
Cancer Treat Res ; 190: 25-47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38112998

RESUMO

Post-transcriptional regulation of gene expression shapes the cell state both in health and disease. RNA modifications-especially N6-methyladenosine (m6A)-have recently emerged as key players in RNA processing that depends on a sophisticated interplay between proteins of the RNA modification machinery. Importantly, the RNA epitranscriptome becomes dysregulated in cancer and promotes cancer-associated gene expression programs as well as cancer cell adaptation to the tumor microenvironment. At the top of the tumor hierarchy, cancer stem cells (CSCs) are master regulators of tumorigenesis and resistance to therapeutic intervention. Therefore, defining how RNA modifications influence the CSC state is of great importance for cancer drug development. In this chapter, we summarize the current knowledge of the roles of RNA modifications in shaping the CSC state and driving gene expression programs that confer stem-like properties to CSCs, promote CSC adaptation to the local microenvironment, and endow CSCs with metastatic potential and drug resistance.


Assuntos
Neoplasias , RNA , Humanos , RNA/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Biologia , Neoplasias/genética , Neoplasias/patologia
5.
Front Neurosci ; 17: 1283742, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942133
6.
Cell Stem Cell ; 30(7): 909-910, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37419102

RESUMO

It remains challenging to create a physiologically relevant human-brain-like environment that would support maturation of human pluripotent stem cell (hPSC)-derived microglia (hMGs). Schafer et al.1 (Cell, 2023) now develop an in vivo neuroimmune organoid model with mature homeostatic hMGs for the study of brain development and disease.


Assuntos
Microglia , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular , Células-Tronco Pluripotentes/fisiologia , Encéfalo
7.
Cell Rep Methods ; 3(5): 100465, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37323577

RESUMO

Cellular differentiation requires global changes to DNA methylation (DNAme), where it functions to regulate transcription factor, chromatin remodeling activity, and genome interpretation. Here, we describe a simple DNAme engineering approach in pluripotent stem cells (PSCs) that stably extends DNAme across target CpG islands (CGIs). Integration of synthetic CpG-free single-stranded DNA (ssDNA) induces a target CpG island methylation response (CIMR) in multiple PSC lines, Nt2d1 embryonal carcinoma cells, and mouse PSCs but not in highly methylated CpG island hypermethylator phenotype (CIMP)+ cancer lines. MLH1 CIMR DNAme spanned the CGI, was precisely maintained through cellular differentiation, suppressed MLH1 expression, and sensitized derived cardiomyocytes and thymic epithelial cells to cisplatin. Guidelines for CIMR editing are provided, and initial CIMR DNAme is characterized at TP53 and ONECUT1 CGIs. Collectively, this resource facilitates CpG island DNAme engineering in pluripotency and the genesis of novel epigenetic models of development and disease.


Assuntos
Metilação de DNA , Neoplasias , Animais , Camundongos , Metilação de DNA/genética , Ilhas de CpG/genética , DNA de Cadeia Simples/metabolismo , Neoplasias/genética , Células Epiteliais/metabolismo
9.
Trends Mol Med ; 29(8): 659-672, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37353408

RESUMO

Progression of Alzheimer's disease (AD) entails deterioration or aberrant function of multiple brain cell types, eventually leading to neurodegeneration and cognitive decline. Defining how complex cell-cell interactions become dysregulated in AD requires novel human cell-based in vitro platforms that could recapitulate the intricate cytoarchitecture and cell diversity of the human brain. Brain organoids (BOs) are 3D self-organizing tissues that partially resemble the human brain architecture and can recapitulate AD-relevant pathology. In this review, we highlight the versatile applications of different types of BOs to model AD pathogenesis, including amyloid-ß and tau aggregation, neuroinflammation, myelin breakdown, vascular dysfunction, and other phenotypes, as well as to accelerate therapeutic development for AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Fenótipo , Organoides/metabolismo
10.
Trends Pharmacol Sci ; 43(6): 522-535, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461717

RESUMO

Pseudouridine (Ψ) is the most abundant post-transcriptional RNA modification and is widespread in multiple RNA species. Ψ impacts various aspects of RNA biology, conferring distinct structural and functional properties to the RNA molecules that it decorates. However, aberrant pseudouridylation contributes to a variety of human diseases, including cancer and genetic disorders. Dysregulation of the Ψ epitranscriptome can arise from mutations and abnormal expression of pseudouridylation machinery, impacting protein translation and other cellular processes. With advancing understanding of Ψ roles in health and disease, efforts are now invested in developing therapeutic and diagnostic approaches targeting Ψ. Emerging reports indicate that Ψ and its installation machinery could be potential pharmacological targets for therapeutic development and may serve as biomarkers for human diseases.


Assuntos
Pseudouridina , Processamento Pós-Transcricional do RNA , Humanos , Pseudouridina/genética , Pseudouridina/metabolismo , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...