Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1155976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654674

RESUMO

Voltage-gated Ca2+ channels (VGCC) directly control muscle contraction and neurotransmitter release, and slower processes such as cell differentiation, migration, and death. They are potently inhibited by RGK GTP-ases (Rem, Rem2, Rad, and Gem/Kir), which decrease Ca2+ channel membrane expression, as well as directly inhibit membrane-resident channels. The mechanisms of membrane-resident channel inhibition are difficult to study because RGK-overexpression causes complete or near complete channel inhibition. Using titrated levels of Gem expression in Xenopus oocytes to inhibit WT P/Q-type calcium channels by ∼50%, we show that inhibition is dependent on channel inactivation. Interestingly, fast-inactivating channels, including Familial Hemiplegic Migraine mutants, are more potently inhibited than WT channels, while slow-inactivating channels, such as those expressed with the Cavß2a auxiliary subunit, are spared. We found similar results in L-type channels, and, remarkably, Timothy Syndrome mutant channels were insensitive to Gem inhibition. Further results suggest that RGKs slow channel recovery from inactivation and further implicate RGKs as likely modulating factors in channelopathies.

2.
J Am Coll Surg ; 235(2): 240-254, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35758926

RESUMO

BACKGROUND: Our earlier studies showed that inhibiting prolyl-4-hydroxylase enzymes (PHD-1 and PHD-3) improves angiogenesis, heart function, and limb perfusion in mouse models via stabilizing hypoxia-inducible transcription factor-alpha (HIF-1α). The present study explored the effects of the prolyl-4-hydroxylase enzyme, PHD-2, on ischemic heart failure using cardiac-specific PHD-2 gene knockout (KO) mice (PHD2 -/- ). STUDY DESIGN: Adult wild-type (WT) and PHD2 -/- mice, 8-12 weeks old, were subjected to myocardial infarction (MI) by irreversibly ligating the left anterior descending (LAD) coronary artery. All sham group mice underwent surgery without LAD ligation. Animals were divided into 4 groups: (1) wild-type sham (WTS); (2) wild-type myocardial infarction (WTMI); (3) PHD2KO sham (PHD2 -/- S); (4) PHD2KO myocardial infarction (PHD2 -/- MI). Left ventricular tissue samples collected at various time points after surgery were used for microRNA expression profiling, Western blotting, and immunohistochemical analysis. RESULTS: Volcano plot analysis revealed 19 differentially-expressed miRNAs in the PHD2 -/- MI group compared with the WTMI group. Target analysis using Ingenuity Pathway Analysis showed several differentially regulated miRNAs targeting key signaling pathways such as Akt, VEGF, Ang-1, PTEN, apoptosis, and hypoxia pathways. Western blot analysis showed increased HIF-1α, VEGF, phospho-AKT, ß-catenin expression and reduced Bax expression for the PHD2 -/- MI group compared with the WTMI group. Echocardiographic analysis showed preserved heart functions, and picrosirius red staining revealed decreased fibrosis in PHD2 -/- MI compared with the WTMI group. CONCLUSIONS: PHD2 inhibition showed preserved heart function, enhanced angiogenic factor expression, and decreased apoptotic markers after MI. Overall, cardiac PHD2 gene inhibition is a promising candidate for managing cardiovascular diseases.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Modelos Animais de Doenças , Hipóxia , Isquemia , Camundongos , Miócitos Cardíacos/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Prolil Hidroxilases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular
3.
PLoS One ; 14(9): e0217733, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31479461

RESUMO

Human ether-à-go-go-related gene (Kv11.1, or hERG) is a potassium channel that conducts the delayed rectifier potassium current (IKr) during the repolarization phase of cardiac action potentials. hERG channels have a larger pore than other K+channels and can trap many unintended drugs, often resulting in acquired LQTS (aLQTS). R-roscovitine is a cyclin-dependent kinase (CDK) inhibitor that induces apoptosis in colorectal, breast, prostate, multiple myeloma, other cancer cell lines, and tumor xenografts, in micromolar concentrations. It is well tolerated in phase II clinical trials. R-roscovitine inhibits open hERG channels but does not become trapped in the pore. Two-electrode voltage clamp recordings from Xenopus oocytes expressing wild-type (WT) or hERG pore mutant channels (T623A, S624A, Y652A, F656A) demonstrated that compared to WT hERG, T623A, Y652A, and F656A inhibition by 200 µM R-roscovitine was ~ 48%, 29%, and 73% weaker, respectively. In contrast, S624A hERG was inhibited more potently than WT hERG, with a ~ 34% stronger inhibition. These findings were further supported by the IC50 values, which were increased for T623A, Y652A and F656A (by ~5.5, 2.75, and 42 fold respectively) and reduced 1.3 fold for the S624A mutant. Our data suggest that while T623, Y652, and F656 are critical for R-roscovitine-mediated inhibition, S624 may not be. Docking studies further support our findings. Thus, R-roscovitine's relatively unique features, coupled with its tolerance in clinical trials, could guide future drug screens.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/química , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Relação Dose-Resposta a Droga , Descoberta de Drogas , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...