Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagn Microbiol Infect Dis ; 109(2): 116251, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492489

RESUMO

A 61-year-old male with subacute headache was found to have cryptococcal meningitis despite a negative BioFire FilmArray meningitis/encephalitis panel. This case underscores the importance of liberal cryptococcal antigen testing, and that a negative FilmArray panel is inadequate in excluding cryptococcal meningitis, particularly in a HIV-negative host.


Assuntos
Meningite Criptocócica , Reação em Cadeia da Polimerase , Humanos , Meningite Criptocócica/diagnóstico , Meningite Criptocócica/microbiologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Cryptococcus neoformans/isolamento & purificação , Cryptococcus neoformans/genética
3.
J Mol Diagn ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37683891

RESUMO

Bacterial commensals of the human genitourinary tract, Mycoplasma hominis and Ureaplasma species (parvum and urealyticum) can be sexually transmitted, with the potential to cause nongonococcal urethritis, pelvic inflammatory disease, and infertility. Mycoplasma hominis and Ureaplasma species may also cause severe invasive infections in immunocompromised patients. Current culture-based methods for Mycoplasma/Ureaplasma identification are costly and laborious, with a turnaround time between 1 and 2 weeks. We developed a high-throughput, real-time multiplex PCR assay for the rapid detection of M. hominis and Ureaplasma species in urine, genital swab, body fluid, and tissue. In total, 282 specimens were tested by PCR and compared with historic culture results; a molecular reference method was used to moderate discrepancies. Overall result agreement was 99% for M. hominis (97% positive percentage agreement and 100% negative percentage agreement) and 96% for Ureaplasma species (96% positive percentage agreement and 97% negative percentage agreement). Specimen stability was validated for up to 7 days at room temperature. This multiplex molecular assay was designed for implementation in a high-complexity clinical microbiology laboratory. With this method, >90 samples can be tested in one run, with a turnaround time of 4 to 5 hours from specimen extraction to reporting of results. This PCR test is also more labor effective and cost-effective than the conventional culture-based test, thus improving laboratory efficiency and alleviating strains because of labor shortages.

4.
Microorganisms ; 11(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37512889

RESUMO

The global emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has become a critical public healthcare concern due to treatment challenges and high mortality. In recent years, there has been an increase in cases of CRKP co-producing New Delhi metallo-ß-lactamases (NDM) and oxacillinase 48 (OXA-48)-like carbapenemases in the US. The aim of this study was to correlate the clinical and genomic characteristics of CRKP co-producing NDM and OXA-48-like carbapenemases isolated from patients in Southern California since 2016. Whole-genome sequencing was performed on clinical isolates obtained from various sources, including blood, abdominal fluid, wounds, and urine. Genetic diversity was observed in these CRKP, including ST-14, ST-16, ST-167, ST-437, ST-2096, and ST-2497 lineages. Phylogenetic analysis revealed two closely related clusters (ST-14 and ST-2497), with single nucleotide polymorphism (SNP) differences ranging from 0 to 36, suggesting a possible local spread of these CRKP. Significant antimicrobial resistance (AMR) genes were identified in these CRKP, including blaNDM-1, blaNDM-5, blaOXA-232, blaOXA-181, blaCTX-M-15, armA, tet(A), and tet(D). Moreover, pColKP3-type and Inc-type plasmids known to harbor AMR genes were also detected in these isolates. Most of the patients infected with this rare type of CRKP died, although their severe comorbidities also played important roles in their demise. Our study highlighted the extremely limited treatment options and poor clinical outcomes associated with these dual-carbapenemase-producing CRKP. Real-time genomic surveillance of these unusual and deadly CRKP can provide critical information for infection prevention and treatment guidance.

5.
J Clin Virol ; 165: 105520, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37336174

RESUMO

Cytomegalovirus (CMV) causes severe systemic and tissue-invasive disease in immunocompromised patients, particularly solid organ and hematopoietic stem cell transplant recipients. While antiviral drugs offer promising efficacy, clinical management is complicated by the high frequency of drug resistance-associated mutations. The most commonly encountered mutations occur in the genes encoding for the drug targets: UL54 (DNA polymerase), UL56 (terminase complex), and UL97 (phosphotransferase), conferring resistance to ganciclovir/cidofovir/foscarnet, letermovir, and ganciclovir/maribavir, respectively. Currently, standard practice for detecting drug resistance is sequencing-based genotypic analysis by commercial reference laboratories with strictly prescribed sample requirements and reporting parameters that can often restrict testing in a highly vulnerable population. In order to circumvent these limitations, we developed a dual-step next-generation sequencing (NGS)-based clinical assay that utilizes full-length gene amplification by long-range PCR followed by shotgun sequencing for mutation analysis. This laboratory-developed test (LDT) achieved satisfactory performance with 96.4% accuracy, 100% precision, and an analytical sensitivity of 300IU/mL with 20% allele frequency. Highlighted by two clinical cases, our NGS LDT was able to provide critical results from patient specimens with viral loads <500IU/mL and volumes <0.5 mL - conditions otherwise unacceptable by reference laboratories. Here, we describe the development and implementation of a robust NGS LDT that offers greater testing flexibility and sensitivity to accommodate a more diverse patient population.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Citomegalovirus/genética , Infecções por Citomegalovirus/diagnóstico , Infecções por Citomegalovirus/tratamento farmacológico , Amplificação de Genes , Antivirais/farmacologia , Antivirais/uso terapêutico , Ganciclovir/uso terapêutico , Mutação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Farmacorresistência Viral/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/uso terapêutico
6.
Am J Clin Pathol ; 159(2): 111-115, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36495133

RESUMO

OBJECTIVES: The aim of this study is to evaluate the effectiveness of a CRISPR-based human and bacterial ribosomal RNA (rRNA) depletion kit (JUMPCODE Genomics) on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shotgun metagenomic sequencing in weakly positive respiratory samples. METHODS: Shotgun metagenomics was performed on 40 respiratory specimens collected from solid organ transplant patients and deceased intensive care unit patients at UCLA Medical Center in late 2020 to early 2021. Human and bacterial rRNA depletion was performed on remnant library pools prior to sequencing by Illumina MiSeq. Data quality was analyzed using Geneious Prime, whereas the identification of SARS-CoV-2 variants and lineages was determined by Pangolin. RESULTS: The average genome coverage of the rRNA-depleted respiratory specimens increased from 72.55% to 93.71% in overall samples and from 29.3% to 83.3% in 15 samples that failed to achieve sufficient genome coverage using the standard method. Moreover, rRNA depletion enhanced genome coverage to over 85% in 11 (73.3%) of 15 low viral load samples with cycle threshold values up to 35, resulting in the identification of genotypes. CONCLUSION: The CRISPR-based human and bacterial rRNA depletion enhanced the sensitivity of SARS-CoV-2 shotgun metagenomic sequencing, especially in low viral load samples.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , RNA Ribossômico , Metagenômica/métodos
7.
J Infect Dis ; 226(9): 1499-1509, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35451492

RESUMO

Herpes simplex virus (HSV) infection of the neonatal brain causes severe encephalitis and permanent neurologic deficits. However, infants infected with HSV at the time of birth follow varied clinical courses, with approximately half of infants experiencing only external infection of the skin rather than invasive neurologic disease. Understanding the cause of these divergent outcomes is essential to developing neuroprotective strategies. To directly assess the contribution of viral variation to neurovirulence, independent of human host factors, we evaluated clinical HSV isolates from neonates with different neurologic outcomes in neurologically relevant in vitro and in vivo models. We found that isolates taken from neonates with encephalitis are more neurovirulent in human neuronal culture and mouse models of HSV encephalitis, as compared to isolates collected from neonates with skin-limited disease. These findings suggest that inherent characteristics of the infecting HSV strain contribute to disease outcome following neonatal infection.


Assuntos
Doenças Transmissíveis , Encefalite por Herpes Simples , Herpes Simples , Animais , Camundongos , Recém-Nascido , Humanos , Herpesvirus Humano 2 , Encéfalo
8.
J Virol ; 94(14)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32376626

RESUMO

Expression of viral genes and activation of innate antiviral responses during infection result in an increase in reactive oxygen species (ROS) and toxic by-products of energy metabolism which can lead to cell death. The mitochondrion and its associated proteins are crucial regulators of these responses and related pathways such as autophagy and apoptosis. Through a mass spectrometry approach, we have shown that the herpes simplex virus 1 (HSV-1) neurovirulence- and autophagy-modulating protein ICP34.5 interacts with numerous mitochondrion-associated factors. Specifically, we showed that amino acids 68 to 87 of ICP34.5, the domain that binds beclin1 and controls neurovirulence, are necessary for interactions with PGAM5, KEAP1, and other regulators of the antioxidant response, mitochondrial trafficking, and programmed cell death. We further show that while this domain interacts with multiple cellular stress response factors, it does not alter apoptosis or antioxidant gene expression. That said, the attenuated replication of a recombinant virus lacking residues 68 to 87 (termed Δ68-87) in primary human fibroblasts was restored by addition of ferric nitrate. Furthermore, in primary mouse neurons, the perinuclear localization of mitochondria that follows infection with HSV-1 was notably absent following Δ68-87 infection. Through this 20-amino-acid domain, ICP34.5 significantly reduces mitochondrial motility in axons of neurons. We propose the hypothesis that ICP34.5 promotes perinuclear mitochondrial localization by modulating transport of mitochondria through interaction with PGAM5. These data expand upon previous observations of altered mitochondrial dynamics following alphaherpesvirus infections and identify a key determinant of this activity during HSV-1 infections.IMPORTANCE Herpes simplex virus persists lifelong in neurons and can reactivate to cause recurrent lesions in mucosal tissues. A key determinant of virulence is the viral protein ICP34.5, of which residues 68 to 87 significantly contribute to neurovirulence through an unknown mechanism. Our report provides evidence that residues 68 to 87 of ICP34.5 are required for binding mitochondrion-associated factors. These interactions alter mitochondrial dynamics in neurons, thereby facilitating viral replication and pathogenesis.


Assuntos
Axônios/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/metabolismo , Mitocôndrias/metabolismo , Proteínas Virais/metabolismo , Axônios/patologia , Axônios/virologia , Células HEK293 , Herpes Simples/patologia , Herpesvirus Humano 1/genética , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Domínios Proteicos , Transporte Proteico , Proteínas Virais/genética
9.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30760571

RESUMO

Herpes simplex virus 1 (HSV-1) cycles between phases of latency in sensory neurons and replication in mucosal sites. HSV-1 encodes two key proteins that antagonize the shutdown of host translation, US11 through preventing PKR activation and ICP34.5 through mediating dephosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). While profound attenuation of ICP34.5 deletion mutants has been repeatedly demonstrated, a role for US11 in HSV-1 pathogenesis remains unclear. We therefore generated an HSV-1 strain 17 US11-null virus and examined its properties in vitro and in vivo In U373 glioblastoma cells, US11 cooperated with ICP34.5 to prevent eIF2α phosphorylation late in infection. However, the effect was muted in human corneal epithelial cells (HCLEs), which did not accumulate phosphorylated eIF2α unless both US11 and ICP34.5 were absent. Low levels of phosphorylated eIF2α correlated with continued protein synthesis and with the ability of virus lacking US11 to overcome antiviral immunity in HCLE and U373 cells. Neurovirulence following intracerebral inoculation of mice was not affected by the deletion of US11. In contrast, the time to endpoint criteria following corneal infection was greater for the US11-null virus than for the wild-type virus. Replication in trigeminal ganglia and periocular tissue was promoted by US11, as was periocular disease. The establishment of latency and the frequency of virus reactivation from trigeminal ganglia were unaffected by US11 deletion, although emergence of the US11-null virus occurred with slowed kinetics. Considered together, the data indicate that US11 facilitates the countering of antiviral response of infected cells and promotes the efficient emergence of virus following reactivation.IMPORTANCE Alphaherpesviruses are ubiquitous DNA viruses and include the human pathogens herpes simplex virus 1 (HSV-1) and HSV-2 and are significant causes of ulcerative mucosal sores, infectious blindness, encephalitis, and devastating neonatal disease. Successful primary infection and persistent coexistence with host immune defenses are dependent on the ability of these viruses to counter the antiviral response. HSV-1 and HSV-2 and other primate viruses within the Simplexvirus genus encode US11, an immune antagonist that promotes virus production by preventing shutdown of protein translation. Here we investigated the impact of US11 deletion on HSV-1 growth in vitro and pathogenesis in vivo This work supports a role for US11 in pathogenesis and emergence from latency, elucidating immunomodulation by this medically important cohort of viruses.


Assuntos
Epitélio Corneano/metabolismo , Herpesvirus Humano 1 , Ceratite Herpética/metabolismo , Proteínas de Ligação a RNA/metabolismo , Gânglio Trigeminal/metabolismo , Proteínas Virais/metabolismo , Ativação Viral/fisiologia , Latência Viral/fisiologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Epitélio Corneano/patologia , Epitélio Corneano/virologia , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Deleção de Genes , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/fisiologia , Humanos , Ceratite Herpética/genética , Ceratite Herpética/patologia , Ceratite Herpética/virologia , Fosforilação , Proteínas de Ligação a RNA/genética , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Células Vero , Proteínas Virais/genética
10.
Virology ; 529: 23-28, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30648635

RESUMO

Herpes simplex virus (HSV)- 1 is the most common cause of sporadic viral encephalitis and accounts for 5-10% of cases worldwide. A key factor in host control of viral infection is the initiation of the interferon (IFN) response, mediated in part by the stimulator of interferon genes (STING) pathway. In these studies, we examined the ability of 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a STING agonist, to protect against HSV-1 infection. DMXAA reduced viral replication through increased production of type I IFN in vitro. Furthermore, administration of DMXAA to HSV-1 infected mice resulted in a reduction of viral burden in the peripheral and central nervous systems. This reduced viral burden also correlated with increased survival of DMXAA-treated infected mice. These results therefore demonstrate the potential of STING agonists for immunotherapy against HSV-1.


Assuntos
Viroses do Sistema Nervoso Central/prevenção & controle , Herpes Simples , Proteínas de Membrana/agonistas , Simplexvirus , Xantonas/uso terapêutico , Animais , Células Cultivadas , Feminino , Fibroblastos/virologia , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon beta/genética , Interferon beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...