Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14923, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37691048

RESUMO

Many studies have explored the extraction of bioactive compounds from different onion solid wastes, such as bulb, skin, and peel. However, onion leaves have received limited attention despite their potential as a valuable source of nutraceutical compounds. This study aimed to valorise, for the first time, the agricultural waste in the form of spring onion leaves (CN, Cipollotto Nocerino) to obtain antioxidant-rich polyphenolic extracts. A Box-Behnken design (BBD) was used to assess the impact of microwave-assisted extraction (MAE) variables (temperature, time, extraction volume, and ethanol concentration) on total polyphenol content (TPC) measured by Folin-Ciocalteu method and the antioxidant power determined by FRAP assay. Response surface methodology (RSM) was applied, and regression equations, analysis of variance, and 3D response curves were developed. Our results highlighted that the TPC values range from 0.76 to 1.43 mg GAE g-1 dw, while the FRAP values range from 8.25 to 14.80 mmol Fe(II)E g-1 dw. The optimal extraction conditions predicted by the model were 60 °C, 22 min, ethanol concentration 51% (v/v), and solvent volume 11 mL. These conditions resulted in TPC and FRAP values of 1.35 mg GAE g-1 dw and 14.02 mmol Fe(II)E g-1 dw, respectively. Furthermore, the extract obtained under optimized conditions was characterized by UHPLC-ESI-Orbitrap-MS analysis. LC/MS-MS platform allowed us to tentatively identify various compounds belonging to the class of flavonoids, saponins, fatty acids, and lipids. Finally, the ability of CN optimal extract to inhibit the intracellular reactive oxygen species (ROS) release in a hepatocarcinoma cell line using an H2O2-induced oxidative stress model, was evaluated. The results highlighted the potential of CN extract as a valuable source of polyphenols with significant antioxidant properties, suitable for various applications in the food and pharmaceutical industries.


Assuntos
Compostos de Bifenilo , Cebolas , Picratos , Folhas de Planta , Cebolas/química , Folhas de Planta/química , Extratos Vegetais/química , Resíduos Sólidos , Compostos de Bifenilo/isolamento & purificação , Picratos/isolamento & purificação , Micro-Ondas , Células Hep G2 , Humanos , Química Verde
2.
Curr Med Chem ; 26(24): 4606-4630, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30259806

RESUMO

BioActive Compounds (BACs) recovered from food or food by-product matrices are useful in maintaining well being, enhancing human health, and modulating immune function to prevent or to treat chronic diseases. They are also generally seen by final consumers as safe, non-toxic and environment-friendly. Despite the complex process of production, chemical characterization, and assessment of health effects, BACs must also be manufactured in stable and bioactive ingredients to be used in pharmaceutical, food and nutraceutical industry. Generally, vegetable derivatives occur as sticky raw materials with pervasive smell and displeasing flavor. Also, they show critical water solubility and dramatic stability behavior over time, involving practical difficulties for industrial use. Therefore, the development of novel functional health products from natural sources requires the design of a suitable formulation to delivery BACs at the site of action, preserve stability during processing and storage, slow down the degradation processes, mask lousy tasting or smell, and increase the bioavailability, while maintaining the BACs functionality. The present review focuses on human health benefits, BACs composition, and innovative technologies or formulation approaches of natural ingredients from some selected foods and by-products from industrial food transformations.


Assuntos
Produtos Biológicos/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Citrus/química , Citrus/metabolismo , Corylus/química , Corylus/metabolismo , Humanos , Isoflavonas/química , Isoflavonas/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polifenóis/química , Polifenóis/uso terapêutico , Glycine max/química , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA