Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015722

RESUMO

In this paper, the use of a phase-sensitive optical time-domain reflectometry (ϕ-OTDR) sensor for the detection of the Lamb waves excited by a piezoelectric transducer in an aluminum plate, is investigated. The system is shown to detect and resolve the Lamb wave in distinct regions of the plate, opening the possibility of realizing structural health monitoring (SHM) and damage detection using a single optical fiber attached to the structure. The system also reveals the variations in the Lamb wave resulting from a change in the load conditions of the plate. The same optical fiber used to detect the Lamb waves has also been employed to realize distributed strain measurements using a Brillouin scattering system. The method can be potentially used to replace conventional SHM sensors such as strain gauges and PZT transducers, with the advantage of offering several sensing points using a single fiber.


Assuntos
Fibras Ópticas , Transdutores
2.
Sensors (Basel) ; 21(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34372287

RESUMO

We demonstrate the use of a graded-index perfluorinated optical fiber (GI-POF) for distributed static and dynamic strain measurements based on Rayleigh scattering. The system is based on an amplitude-based phase-sensitive Optical Time-Domain Reflectometry (ϕ-OTDR) configuration, operated at the unconventional wavelength of 850 nm. Static strain measurements have been carried out at a spatial resolution of 4 m and for a strain up to 3.5% by exploiting the increase of the backscatter Rayleigh coefficient consequent to the application of a tensile strain, while vibration/acoustic measurements have been demonstrated for a sampling frequency up to 833 Hz by exploiting the vibration-induced changes in the backscatter Rayleigh intensity time-domain traces arising from coherent interference within the pulse. The reported tests demonstrate that polymer optical fibers can be used for cost-effective multiparameter sensing.

3.
Appl Opt ; 60(13): 3579-3584, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33983286

RESUMO

In this paper, we demonstrate automatic vehicle detection and counting by processing data acquired using a phase-sensitive optical time-domain reflectometer (ϕ-OTDR) distributed optical fiber sensor. The acquired data are processed using the Hough transform, which detects the lines in the images formed by representing the acquired data in the space-time domain. A rough classification of the vehicles (heavy versus light vehicles) is also proposed, based on the amplitude of the vibration data along the detected lines. The method has been experimentally tested by performing ϕ-OTDR measurements along a telecommunication fiber cable running in a buried conduit along the state road SS18 (province of Salerno, Italy), opened to normal traffic. Comparison with ground-truth data, manually generated by inspecting video recordings, allowed us to estimate a vehicle detection success rate up to 73%, while heavy vehicles were fully detected.

4.
Opt Express ; 29(4): 6021-6035, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726133

RESUMO

We demonstrate a two-wavelength differential-phase-measuring OTDR sensor that uses perfect periodic correlation phase codes to enhance the measurement performance. The two-wavelength technique extends the measurement range of OTDR sensors by synthesizing a virtual longer-wavelength measurement from two simultaneous measurements of phase using different lasers. This increases the range free from phase unwrapping errors. However, we find that the application of this technique greatly increases the relative measurement noise. To compensate for this issue, we introduce the use of optical pulse compression using perfect periodic correlation phase codes to increase the measurement signal-to-noise ratio and also to facilitate the simultaneous compensation of Rayleigh and polarization fading. In addition, we apply a method to further reduce the relative noise that is added to the two-wavelength measurement by using the synthetic wavelength measurement to unwrap the differential phase measured with a single wavelength. All this is highlighted in a 1-km sensing link in which up to 20-cm spatial resolution and 12.6 pϵ/Hz strain sensitivity are demonstrated as well as a 67-fold enhancement in measurement range compared with the use of the conventional single-wavelength method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...