Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 1752, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849381

RESUMO

Conjugative transfer is one of the mechanisms allowing diversification and evolution of bacteria. Rhizobium etli CFN42 is a bacterial strain whose habitat is the rhizosphere and is able to form nodules as a result of the nitrogen-fixing symbiotic relationship it may establish with the roots of Phaseolus vulgaris. R. etli CFN42 contains one chromosome and six large plasmids (pRet42a - pRet42f). Most of the genetic information involved in the establishment of the symbiosis is localized on plasmid pRet42d, named as the symbiotic plasmid (pSym). This plasmid is able to perform conjugation, using pSym encoded transfer genes controlled by the RctA/RctB system. Another plasmid of CFN42, pRet42a, has been shown to perform conjugative transfer not only in vitro, but also on the surface of roots and inside nodules, using other rhizobia as recipients. In addition to the rhizobia involved in the formation of nodules, these structures have been shown to contain endophytic bacteria from different genera and species. In this work, we have explored the conjugative transfer of the pSym (pRet42d) from R. etli CFN42 to endophytic bacteria as putative recipients, using as donor a CFN42 derivative labeled with GFP in the pRet42d and RFP in the chromosome. We were able to isolate some transconjugants, which inherit the GFP, but not the RFP marker. Some of them were identified, analyzed and evaluated for their ability to nodulate. We found transconjugants from genera such as Stenotrophomonas, Achromobacter, and Bacillus, among others. Although all the transconjugants carried the GFP marker, and nod, fix, and nif genes from pRet42d, not all were able to nodulate. Ultrastructure microscopy analysis showed some differences in the structure of the nodules of one of the transconjugants. A replicon of the size of pRet42d (371 Kb) could not be visualized in the transconjugants, suggesting that the pSym or a segment of the plasmid is integrated in the chromosome of the recipients. These findings strengthen the proposal that nodules constitute a propitious environment for exchange of genetic information among bacteria, in addition to their function as structures where nitrogen fixation and assimilation takes place.

2.
Environ Microbiol ; 21(9): 3430-3441, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31037804

RESUMO

Since the discovery that biological nitrogen fixation ensues in nodules resulting from the interaction of rhizobia with legumes, nodules were thought to be exclusive for hosting nitrogen-fixing and plant growth promoting bacteria. In this work, we uncover a novel function of nodules, as a niche permissive to acquisition of plasmids via conjugative transfer. We used Rhizobium etli CFN42, which nodulates Phaseolus vulgaris. The genome of R. etli CFN42 contains a chromosome and six plasmids. pRet42a is a conjugative plasmid regulated by Quorum-Sensing (QS), and pRet42d is the symbiotic plasmid. Here, using confocal microscopy and flow cytometry, we show that pRet42a transfers on the root's surface, and unexpectedly, inside the nodules. Conjugation still took place inside nodules, even when it was restricted on the plant surface by placing the QS traI regulator under the promoter of the nitrogenase gene, which is only expressed inside the nodules, or by inhibiting the QS transcriptional induction of transfer genes with a traM antiactivator on an unstable vector maintained on the plant surface and lost inside the nodules. These results conclusively confirm the occurrence of conjugation in these structures, defining them as a protected environment for bacterial diversification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...