Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1257042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753081

RESUMO

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated a joint global effort to develop vaccines and other treatments that could mitigate the negative effects and the rapid spread of the virus. Single-domain antibodies derived from various sources, including cartilaginous fish, camelids, and humans, have gained attention as promising therapeutic tools against coronavirus disease 2019. Shark-derived variable new antigen receptors (VNARs) have emerged as the smallest naturally occurring antigen-binding molecules. Here, we compile and review recent published studies on VNARs with the capacity to recognize and/or neutralize SARS-CoV-2. We found a close balance between the use of natural immune libraries and synthetic VNAR libraries for the screening against SARS-CoV-2, with phage display being the preferred display technology for the selection of VNARs against this virus. In addition, we discuss potential modifications and engineering strategies employed to improve the neutralization potential of VNARs, such as exploring fusion with the Fc domain of human Immunoglobulin G (IgG) to increase avidity and therapeutic potential. This research highlights the potential of VNARs as powerful molecular tools in the fight against infectious diseases.


Assuntos
COVID-19 , Tubarões , Animais , Humanos , SARS-CoV-2 , Técnicas de Visualização da Superfície Celular , Receptores de Antígenos
2.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293124

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 is the causal pathogen of coronavirus disease 2019 (COVID-19). The emergence of new variants with different mutational patterns has limited the therapeutic options available and complicated the development of effective neutralizing antibodies targeting the spike (S) protein. Variable New Antigen Receptors (VNARs) constitute a neutralizing antibody technology that has been introduced into the list of possible therapeutic options against SARS-CoV-2. The unique qualities of VNARs, such as high affinities for target molecules, capacity for paratope reformatting, and relatively high stability, make them attractive molecules to counteract the emerging SARS-CoV-2 variants. In this study, we characterized a VNAR antibody (SP240) that was isolated from a synthetic phage library of VNAR domains. In the phage display, a plasma with high antibody titers against SARS-CoV-2 was used to selectively displace the VNAR antibodies bound to the antigen SARS-CoV-2 receptor binding domain (RBD). In silico data suggested that the SP240 binding epitopes are located within the ACE2 binding interface. The neutralizing ability of SP240 was tested against live Delta and Omicron SARS-CoV-2 variants and was found to clear the infection of both variants in the lung cell line A549-ACE2-TMPRSS2. This study highlights the potential of VNARs to act as neutralizing antibodies against emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/genética , Testes de Neutralização , Anticorpos Antivirais , Anticorpos Neutralizantes , Epitopos
3.
J Allergy Clin Immunol ; 142(5): 1605-1617.e4, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29447842

RESUMO

BACKGROUND: Wiskott-Aldrich syndrome (WAS) is a rare primary immunodeficiency caused by mutations in Wiskott-Aldrich syndrome protein (WASp), a key regulator of cytoskeletal dynamics in hematopoietic cells. A high proportion of patients experience autoimmunity caused by a breakdown in T- and B-cell tolerance. Moreover, excessive production of type I interferon (IFN-I) by plasmacytoid dendritic cells (pDCs) contributes to autoimmune signs; however, the factors that trigger excessive innate activation have not been defined. OBJECTIVE: Neutrophil extracellular traps (NETs) emerged as major initiating factors in patients with diseases such as systemic lupus erythematosus and rheumatoid arthritis. In this study we explored the possible involvement of aberrant neutrophil functions in patients with WAS. METHODS: We evaluated the expression of a set of granulocyte genes associated with NETs in a cohort of patients with WAS and the presence of NET inducers in sera. Using a mouse model of WAS, we analyzed NET release by WASp-null neutrophils and evaluated the composition and homeostasis of neutrophils in vivo. By using depletion experiments, we assessed the effect of neutrophils in promoting inflammation and reactivity against autoantigens. RESULTS: Transcripts of genes encoding neutrophil enzymes and antimicrobial peptides were increased in granulocytes of patients with WAS, and serum-soluble factors triggered NET release. WASp-null neutrophils showed increased spontaneous NETosis, induced IFN-I production by pDCs, and activated B cells through B-cell activating factor. Consistently, their depletion abolished constitutive pDC activation, normalized circulating IFN-I levels, and, importantly, abolished production of autoantibodies directed against double-stranded DNA, nucleosomes, and myeloperoxidase. CONCLUSIONS: These findings reveal that neutrophils are involved in the pathogenic loop that causes excessive activation of innate cells and autoreactive B cells, thus identifying novel mechanisms that contribute to the autoimmunity of WAS.


Assuntos
Interferon Tipo I/imunologia , Neutrófilos/imunologia , Síndrome de Wiskott-Aldrich/imunologia , Adolescente , Adulto , Animais , Autoanticorpos/imunologia , Linfócitos B/imunologia , Pré-Escolar , Células Dendríticas/imunologia , Armadilhas Extracelulares , Feminino , Expressão Gênica , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome de Wiskott-Aldrich/genética , Adulto Jovem
4.
Front Immunol ; 8: 490, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28512459

RESUMO

Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency caused by mutations in the gene encoding the hematopoietic-specific WAS protein (WASp). WAS is frequently associated with autoimmunity, indicating a critical role of WASp in maintenance of tolerance. The role of B cells in the induction of autoreactive immune responses in WAS has been investigated in several settings, but the mechanisms leading to the development of autoimmune manifestations have been difficult to evaluate in the mouse models of the disease that do not spontaneously develop autoimmunity. We performed an extensive characterization of Was-/- mice that provided evidence of the potential alteration in B cell selection, because of the presence of autoantibodies against double-stranded DNA, platelets, and tissue antigens. To uncover the mechanisms leading to the activation of the potentially autoreactive B cells in Was-/- mice, we performed in vivo chronic stimulations with toll-like receptors agonists (LPS and CpG) and apoptotic cells or infection with lymphocytic choriomeningitis virus. All treatments led to increased production of autoantibodies, increased proteinuria, and kidney tissue damage in Was-/- mice. These findings demonstrate that a lower clearance of pathogens and/or self-antigens and the resulting chronic inflammatory state could cause B cell tolerance breakdown leading to autoimmunity in WAS.

5.
Toxins (Basel) ; 8(2): 38, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26861394

RESUMO

Lung cancer is one of the most common types of cancer in men and women and a leading cause of death worldwide resulting in more than one million deaths per year. The venom of marine snails Conus contains up to 200 pharmacologically active compounds that target several receptors in the cell membrane. Due to their diversity and specific binding properties, Conus toxins hold great potential as source of new drugs against cancer. We analyzed the cytotoxic effect of a 17-amino acid synthetic peptide (s-cal14.1a) that is based on a native toxin (cal14.1a) isolated from the sea snail Conus californicus. Cytotoxicity studies in four lung cancer cell lines were complemented with measurement of gene expression of apoptosis-related proteins Bcl-2, BAX and the pro-survival proteins NFκB-1 and COX-2, as well as quantification of caspase activity. Our results showed that H1299 and H1437 cell lines treated with s-call4.1a had decreased cell viability, activated caspases, and reduced expression of the pro-survival protein NFκB-1. To our knowledge, this is the first report describing activation of apoptosis in human lung cancer cell lines by s-cal14.1a and we offer insight into the possible mechanism of action.


Assuntos
Antineoplásicos/farmacologia , Venenos de Moluscos/farmacologia , Peptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Caramujo Conus , Ciclo-Oxigenase 2/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/metabolismo , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...