Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Death Dis ; 6: e1739, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25950469

RESUMO

Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration.


Assuntos
Antioxidantes/metabolismo , Bilirrubina/toxicidade , Cerebelo/metabolismo , Glucuronosiltransferase/metabolismo , Neurônios/metabolismo , Animais , Bilirrubina/sangue , Morte Celular/fisiologia , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/enzimologia , Modelos Animais de Doenças , Glucuronosiltransferase/deficiência , Glucuronosiltransferase/genética , Hiperbilirrubinemia/metabolismo , Hiperbilirrubinemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Oxirredução
2.
Transplant Proc ; 39(6): 1755-60, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17692604

RESUMO

Oxidative stress is a condition occurring in liver disorders and causing liver damage due to ischemia-reperfusion (I/R) during liver transplantation. Several markers of chronic oxidative stress are well known; however, early protein targets of oxidative injury are not well defined. To identify them, we used a differential proteomics approach to HepG2 human liver cells that has been treated for 10 minutes with 500 micromol/L H(2)O(2). By differential proteomic analysis, using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry, we identified four proteins sensitive to H(2)O(2) treatment that underwent posttranslational modification of native polypeptides. Three of the proteins belong to the Peroxiredoxin family of hydroperoxide scavengers, PrxI, PrxII, and Prx VI, that showed changes in their pI as result of hyperoxidation. Mass mapping experiments demonstrated specific modification of the peroxiredoxins active site thiol into sulphinic and/or sulphonic acid, thus explaining an increased negative charge. The oxidation kinetics of all peroxiredoxins were extremely rapid and sensitive, occurring at H(2)O(2) doses unable to affect common markers of cellular oxidative stress. A differential proteomics approach was also applied to liver needle biopsies after cold (T(1)) and warm (T(2)) ischemia. Proteomic analysis of this material was related to histological changes and immunophenotypic expression of APE1/Ref-1. Hyperoxidation of PrxI occurring during I/R upon liver transplantation is dependent on the time of warm ischemia. Histological changes and APE1/Ref-1 expression parallel Peroxiredoxin changes. Our present data may be relevant to better graft preservation and evaluation for transplantation.


Assuntos
Proteoma , Traumatismo por Reperfusão/genética , Humanos , Fígado/patologia , Circulação Hepática , Oxirredução , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA