Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38068230

RESUMO

The objective of this study was to formulate dip coatings, incorporating casein, NaOH, and nanocrystalline hydroxyapatite (nanoHAp), with self-healing properties for application on ZnMg3.2 wt.% alloy in the field of biomedical applications. This study hypothesizes that the self-healing mechanism within the layer will impede substrate degradation by progressively filling defects where chlorides from simulated body fluids intervene. Furthermore, it aims to mitigate potential damage effects during the implantation process by the layer's self-healing capabilities. The research focused on the dip-coating process parameters and chemical composition of baths for producing casein coatings on Zn alloy surfaces. This study investigated the impact of casein and NaOH concentration, along with the immersion time of ZnMg3.2 wt.% samples in the coating bath, on the self-healing capability of the coating under simulated human body fluid conditions (Ringer's solution, temperature: 37 °C). Effective technology was developed by selecting specific chemical compositions and immersion times in the coating bath, enhancing the self-healing progress against coating damage in Ringer's solution at 37 °C. The most significant self-healing effect was observed when the ZnMg3.2 wt.% substrate underwent a 1 h immersion in a coating bath containing 2 g of casein, 4 g of NaOH, and 0.1 g of nanoHAp powder. Electrochemical tests were instrumental in determining the optimal casein concentration and immersion time of the Zn alloy in the coating bath.

2.
Materials (Basel) ; 15(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35207938

RESUMO

This article discusses the influence of conversion casein coatings with a thickness of about 20 µm on the structure and the corrosion behavior of two magnesium alloys: MgCa2Zn1 and MgCa2Zn1Gd3. Casein is a protein that, along with whey protein, is a part of milk. Casein coatings are appropriate for bone growth because they contain high amounts of calcium and phosphorus. In this work, casein coatings and casein-free coatings were applied on Mg-based alloys using the conversion process. The structure and topography observations were presented. The corrosion behavior was determined by electrochemical and immersion tests, and electrochemical impedance spectroscopy (EIS) in chloride-rich Ringer solution. The obtained results show that conversion casein coatings effectively protect Mg-based alloys against corrosion. This was confirmed by higher corrosion potentials (Ecorr), polarization resistances (Rp) derived from Tafel's and EIS analysis, as well as low hydrogen release. The volume of hydrogen released after 216 h of immersion for casein coatings applied to MgCa2Zn1 and MgCa2Zn1Gd3 alloys was 19.25 and 12.42 mL/cm2, respectively. The improvement in corrosion resistance of casein coatings was more significant for Mg alloy dopped with gadolinium. The lower corrosion rate of casein conversion coatings is explained by the synergistic effect of the addition of Gd in the Mg-based alloy and the formation of dense, tight conversion casein coatings on the surface of this alloy.

3.
Materials (Basel) ; 14(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34576465

RESUMO

The spontaneous oxidation of a magnetite surface and shape design are major aspects of synthesizing various nanostructures with unique magnetic and electrical properties, catalytic activity, and biocompatibility. In this article, the roles of different organic modifiers on the shape and formation of an oxidized layer composed of maghemite were discussed and described in the context of magnetic and electrical properties. It was confirmed that Fe3O4 nanoparticles synthesized in the presence of triphenylphosphine could be characterized by cuboidal shape, a relatively low average particle size (9.6 ± 2.0 nm), and high saturation magnetization equal to 55.2 emu/g. Furthermore, it has been confirmed that low-frequency conductivity and dielectric properties are related to surface disordering and oxidation. The electric energy storage possibility increased for nanoparticles with a disordered and oxidized surface, whereas the dielectric losses in these particles were strongly related to their size. The cuboidal magnetite nanoparticles synthesized in the presence of triphenylphosphine had an ultrahigh electrical conductivity (1.02 × 10-4 S/cm at 10 Hz) in comparison to the spherical ones. At higher temperatures, the maghemite content altered the behavior of electrons. The electrical conductivity can be described by correlated barrier hopping or overlapping large polaron tunneling. Interestingly, the activation energies of electrons transport by the surface were similar for all the analyzed nanoparticles in low- and high-temperature ranges.

4.
Materials (Basel) ; 13(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861328

RESUMO

Magnesium alloys are considered as potential biomaterials for use in orthopedic implantology. The main barrier to the use of Mg alloys in medicine is their overly fast and irregular degradation in body fluids. The use of protective calcium phosphate coatings to increase the corrosion resistance of Mg alloy (AM50 alloy: 4 wt.% Al, 0.3 wt.% Mn, 0.2 wt.% Zn, rest Mg) was examined in this study. The scientific goal of the study was the assessment of the influence of calcium phosphate layer morphology on the corrosion process in Ringer's solution. Modification of the coating morphology was obtained by changing the chemical composition of the phosphatizing bath using NaOH (NaAM50 sample) or ZnSO4 (ZnAM50 sample). In practice, a more dense and uniform coating could be obtained by the immersion of AM50 alloy in a solution containing ZnSO4 (ZnAM50 sample). In this study, an adhesion test performed on the ZnAM50 sample indicated that the critical load was 1.35 N. XRD phase analysis confirmed that the obtained coatings included dicalcium phosphate dihydrate (CaHPO4*2H2O). The coatings prepared on the NaAM50 and ZnAM50 samples are effective barriers against the progress of corrosion deeper into the substrate. After 120 h immersion in Ringer's solution, the volume of the evolved hydrogen was 5.6 mL/cm2 for the NaAM50 and 3.4 mL/cm2 for the ZnAM50 sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...