Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Genet Couns ; 32(2): 266-280, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36281494

RESUMO

Epilepsy, defined by the occurrence of two or more unprovoked seizures or one unprovoked seizure with a propensity for others, affects 0.64% of the population and can lead to significant morbidity and mortality. A majority of unexplained epilepsy (seizures not attributed to an acquired etiology, such as trauma or infection) is estimated to have an underlying genetic etiology. Despite rapid progress in understanding of the genetic underpinnings of the epilepsies, there are no recent evidence-based guidelines for genetic testing and counseling for this population. This practice guideline provides evidence-based recommendations for approaching genetic testing in the epilepsies using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Evidence to Decision framework. We used evidence from a recent systematic evidence review and meta-analysis of diagnostic yield of genetic tests in patients with epilepsy. We also compiled data from other sources, including recently submitted conference abstracts and peer-reviewed journal articles. We identified and prioritized outcomes of genetic testing as critical, important or not important and based our recommendations on outcomes deemed critical and important. We considered the desirable and undesirable effects, value and acceptability to relevant stakeholders, impact on health equity, cost-effectiveness, certainty of evidence, and feasibility of the interventions in individuals with epilepsy. Taken together, we generated two clinical recommendations: (1) Genetic testing is strongly recommended for all individuals with unexplained epilepsy, without limitation of age, with exome/genome sequencing and/or a multi-gene panel (>25 genes) as first-tier testing followed by chromosomal microarray, with exome/genome sequencing conditionally recommended over multi-gene panel. (2) It is strongly recommended that genetic tests be selected, ordered, and interpreted by a qualified healthcare provider in the setting of appropriate pre-test and post-test genetic counseling. Incorporation of genetic counselors into neurology practices and/or referral to genetics specialists are both useful models for supporting providers without genetics expertise to implement these recommendations.


Assuntos
Conselheiros , Epilepsia , Humanos , Testes Genéticos , Epilepsia/diagnóstico , Epilepsia/genética , Aconselhamento Genético , Prática Clínica Baseada em Evidências , Convulsões , Aconselhamento
2.
Genet Med ; 23(8): 1465-1473, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833410

RESUMO

PURPOSE: We characterize the clinical and molecular phenotypes of six unrelated individuals with intellectual disability and autism spectrum disorder who carry heterozygous missense variants of the PRKAR1B gene, which encodes the R1ß subunit of the cyclic AMP-dependent protein kinase A (PKA). METHODS: Variants of PRKAR1B were identified by single- or trio-exome analysis. We contacted the families and physicians of the six individuals to collect phenotypic information, performed in vitro analyses of the identified PRKAR1B-variants, and investigated PRKAR1B expression during embryonic development. RESULTS: Recent studies of large patient cohorts with neurodevelopmental disorders found significant enrichment of de novo missense variants in PRKAR1B. In our cohort, de novo origin of the PRKAR1B variants could be confirmed in five of six individuals, and four carried the same heterozygous de novo variant c.1003C>T (p.Arg335Trp; NM_001164760). Global developmental delay, autism spectrum disorder, and apraxia/dyspraxia have been reported in all six, and reduced pain sensitivity was found in three individuals carrying the c.1003C>T variant. PRKAR1B expression in the brain was demonstrated during human embryonal development. Additionally, in vitro analyses revealed altered basal PKA activity in cells transfected with variant-harboring PRKAR1B expression constructs. CONCLUSION: Our study provides strong evidence for a PRKAR1B-related neurodevelopmental disorder.


Assuntos
Apraxias , Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/genética , Subunidade RIbeta da Proteína Quinase Dependente de AMP Cíclico , Feminino , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Dor , Gravidez
3.
Am J Hum Genet ; 104(6): 1210-1222, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31079897

RESUMO

We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities.


Assuntos
Proteínas de Ligação a DNA/genética , Epilepsia/etiologia , Variação Genética , Heterozigoto , Transtornos do Neurodesenvolvimento/etiologia , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/patologia , Feminino , Haploinsuficiência , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Fenótipo , Adulto Jovem
4.
Ann Clin Transl Neurol ; 5(8): 996-1010, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30128325

RESUMO

Paroxysmal movement disorders encompass varied motor phenomena. Less recognized features and wide phenotypic and genotypic heterogeneity are impediments to straightforward molecular diagnosis. We describe a family with episodic ataxia type 1, initially mis-characterized as paroxysmal dystonia to illustrate this diagnostic challenge. We summarize clinical features in affected individuals to highlight underappreciated aspects and provide comprehensive phenotypic description of the rare familial KCNA1 mutation. Delayed diagnosis in this family is emblematic of the broader challenge of diagnosing other paroxysmal motor disorders. We summarize genotypic and phenotypic overlap and provide a suggested diagnostic algorithm for approaching patients with these conditions.

5.
Pediatr Dev Pathol ; 21(3): 319-323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29187032

RESUMO

Objective Herein, we report a case of a deceased newborn with prenatally detected hydrocephalus. Postnatal findings included abnormal brain imaging and electroencephalogram, optic nerve abnormalities, and elevated creatine kinase (CK). No underlying genetic etiology had been previously identified for the proband, despite testing with a congenital muscular dystrophy gene panel. Methods Diagnostic exome sequencing (DES) was performed on the proband-parents trio, and candidate alterations were confirmed using automated fluorescence dideoxy sequencing. Results Exome sequencing of the proband, mother and father identified a previously unreported apparently de novo heterozygous tubulin, beta-3 ( TUBB3) c.523G>C (p.V175L) alteration in the proband. Conclusion Overall, DES established a likely molecular genetic diagnosis for a postmortem case after traditional testing methods were uninformative. The DES results allowed for reproductive options, such as preimplantation genetic diagnosis and/or prenatal diagnosis, to be available to the parents in future pregnancies.


Assuntos
Sequenciamento do Exoma , Hidrocefalia/diagnóstico , Diagnóstico Pré-Natal , Tubulina (Proteína)/genética , Síndrome de Walker-Warburg/diagnóstico , Evolução Fatal , Feminino , Marcadores Genéticos , Heterozigoto , Humanos , Hidrocefalia/etiologia , Recém-Nascido , Gravidez , Síndrome de Walker-Warburg/complicações , Síndrome de Walker-Warburg/genética
6.
Am J Hum Genet ; 100(1): 117-127, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28017373

RESUMO

From a GeneMatcher-enabled international collaboration, we identified ten individuals affected by intellectual disability, speech delay, ataxia, and facial dysmorphism and carrying a deleterious EBF3 variant detected by whole-exome sequencing. One 9-bp duplication and one splice-site, five missense, and two nonsense variants in EBF3 were found; the mutations occurred de novo in eight individuals, and the missense variant c.625C>T (p.Arg209Trp) was inherited by two affected siblings from their healthy mother, who is mosaic. EBF3 belongs to the early B cell factor family (also known as Olf, COE, or O/E) and is a transcription factor involved in neuronal differentiation and maturation. Structural assessment predicted that the five amino acid substitutions have damaging effects on DNA binding of EBF3. Transient expression of EBF3 mutant proteins in HEK293T cells revealed mislocalization of all but one mutant in the cytoplasm, as well as nuclear localization. By transactivation assays, all EBF3 mutants showed significantly reduced or no ability to activate transcription of the reporter gene CDKN1A, and in situ subcellular fractionation experiments demonstrated that EBF3 mutant proteins were less tightly associated with chromatin. Finally, in RNA-seq and ChIP-seq experiments, EBF3 acted as a transcriptional regulator, and mutant EBF3 had reduced genome-wide DNA binding and gene-regulatory activity. Our findings demonstrate that variants disrupting EBF3-mediated transcriptional regulation cause intellectual disability and developmental delay and are present in ∼0.1% of individuals with unexplained neurodevelopmental disorders.


Assuntos
Ataxia/genética , Face/anormalidades , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Pré-Escolar , Cromatina/genética , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Deficiências do Desenvolvimento/genética , Exoma/genética , Feminino , Regulação da Expressão Gênica/genética , Genes Reporter , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Mosaicismo , Transporte Proteico/genética , Síndrome , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...