Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 7178, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504980

RESUMO

Magnetic tunnel junctions (MTJ) have been successfully applied in various sensing application and digital information storage technologies. Currently, a number of new potential applications of MTJs are being actively studied, including high-frequency electronics, energy harvesting or random number generators. Recently, MTJs have been also proposed in designs of new platforms for unconventional or bio-inspired computing. In the current work, we present a complete hardware implementation design of a neural computing device that incorporates serially connected MTJs forming a multi-state memory cell can be used in a hardware implementation of a neural computing device. The main purpose of the multi-cell is the formation of quantized weights in the network, which can be programmed using the proposed electronic circuit. Multi-cells are connected to a CMOS-based summing amplifier and a sigmoid function generator, forming an artificial neuron. The operation of the designed network is tested using a recognition of hand-written digits in 20 [Formula: see text] 20 pixels matrix and shows detection ratio comparable to the software algorithm, using weights stored in a multi-cell consisting of four MTJs or more. Moreover, the presented solution has better energy efficiency in terms of energy consumed per single image processing, as compared to a similar design.


Assuntos
Computadores , Redes Neurais de Computação , Algoritmos , Armazenamento e Recuperação da Informação , Neurônios/fisiologia
2.
ACS Appl Mater Interfaces ; 13(39): 47019-47032, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34558910

RESUMO

The spin-orbit torque, a torque induced by a charge current flowing through the heavy-metal-conducting layer with strong spin-orbit interactions, provides an efficient way to control the magnetization direction in heavy-metal/ferromagnet nanostructures, required for applications in the emergent magnetic technologies like random access memories, high-frequency nano-oscillators, or bioinspired neuromorphic computations. We study the interface properties, magnetization dynamics, magnetostatic features, and spin-orbit interactions within the multilayer system Ti(2)/Co(1)/Pt(0-4)/Co(1)/MgO(2)/Ti(2) (thicknesses in nanometers) patterned by optical lithography on micrometer-sized bars. In the investigated devices, Pt is used as a source of the spin current and as a nonmagnetic spacer with variable thickness, which enables the magnitude of the interlayer ferromagnetic exchange coupling to be effectively tuned. We also find the Pt thickness-dependent changes in magnetic anisotropies, magnetoresistances, effective Hall angles, and, eventually, spin-orbit torque fields at interfaces. The experimental findings are supported by the relevant interface structure-related simulations, micromagnetic, macrospin, as well as the spin drift-diffusion models. Finally, the contribution of the spin-orbital Edelstein-Rashba interfacial fields is also briefly discussed in the analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...