Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Int J Biol Macromol ; 263(Pt 2): 130311, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403220

RESUMO

The Brazilian scorpion Tityus melici, native to Minas Gerais and Bahia, is morphologically related to Tityus serrulatus, the most medically significant species in Brazil. Despite inhabiting scorpion-envenomation endemic regions, T. melici venom remains unexplored. This work evaluates T. melici venom composition and function using transcriptomics, enzymatic activities, and in vivo and in vitro immunological analyses. Next-Generation Sequencing unveiled 86 components putatively involved in venom toxicity: 39 toxins, 28 metalloproteases, seven disulfide isomerases, six hyaluronidases, three phospholipases and three amidating enzymes. T. serrulatus showed the highest number of toxin matches with 80-100 % sequence similarity. T. melici is of medical importance as it has a venom LD50 of 0.85 mg/kg in mice. We demonstrated venom phospholipase A2 activity, and elevated hyaluronidase and metalloprotease activities compared to T. serrulatus, paralleling our transcriptomic findings. Comparison of transcriptional levels for T. serrulatus and T. melici venom metalloenzymes suggests species-specific expression patterns in Tityus. Despite close phylogenetic association with T. serrulatus inferred from COI sequences and toxin similarities, partial neutralization of T. melici venom toxicity was achieved when using the anti-T. serrulatus antivenom, implying antigenic divergence among their toxins. We suggest that the Brazilian therapeutic scorpion antivenom could be improved to effectively neutralize T. melici venom.


Assuntos
Animais Peçonhentos , Venenos de Escorpião , Toxinas Biológicas , Camundongos , Animais , Transcriptoma , Sequência de Aminoácidos , Escorpiões/genética , Brasil , Peçonhas , Antivenenos , Filogenia , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Perfilação da Expressão Gênica , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo
2.
Toxins (Basel) ; 15(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37888620

RESUMO

Antivenom production against Loxosceles venom relies on horses being immunized and bled for plasma harvest. One horse can partake in several cycles of antivenom production, which will require years of constant venom and adjuvant inoculation and bleeding. The actual impact on the health of horses that participate in several antivenom-producing cycles is unknown. Therefore, this study aimed to evaluate the general health status of horses that underwent at least six cycles of loxoscelic antivenom production. Seven crossbred horses that had partaken in six to eight complete antivenom-producing cycles were used and established as the immunized group (IG). Under the same handling and general management, eleven horses were established as the control group (CG). The horses were evaluated regarding their general clinical status and had their blood sampled, and an ECG recorded. The IG presented lower RBC and PCV, despite keeping values within inferior limits for the species. Renal function was not impaired, and liver-related enzymes were higher than those in the CG, probably due to liver exertion from immunoglobulin synthesis. ECG showed some abnormalities in the IG, such as atrioventricular block and a wandering atrial pacemaker, corroborated by an increase in CK-MB. The cardiovascular abnormalities were mainly found in the horses that participated in several antivenom-producing cycles. The overall results indicate that these horses had some impairment of their general health status. Once available, some alternative, less toxic antigens should replace the venom for immunization of horses used for antivenom production.


Assuntos
Antivenenos , Imunização , Cavalos , Animais , Adjuvantes Imunológicos , Antígenos , Nível de Saúde
3.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446341

RESUMO

RNA purification and cDNA synthesis represents the starting point for molecular analyses of snake venom proteins-enzymes. Usually, the sacrifice of snakes is necessary for venom gland extraction to identify protein-coding transcripts; however, the venom can be used as a source of transcripts. Although there are methods for obtaining RNA from venom, no comparative analysis has been conducted in the Bothrops genus. In the present study, we compared four commercial methods for RNA purification and cDNA synthesis from venom (liquid, lyophilized, or long-term storage) of four clinically relevant species of Peruvian Bothrops. Our results show that the TRIzol method presents the highest yield of RNA purified from venom (59 ± 11 ng/100 µL or 10 mg). The SuperScript First-Strand Synthesis System kit produced high amounts of cDNA (3.2 ± 1.2 ng cDNA/ng RNA), and the highest value was from combination with the Dynabeads mRNA DIRECT kit (4.8 ± 2.0 ng cDNA/ng RNA). The utility of cDNA was demonstrated with the amplification of six relevant toxins: thrombin-like enzymes, P-I and P-III metalloproteinases, acid and basic phospholipases A2, and disintegrins. To our knowledge, this is the first comparative study of RNA purification and cDNA synthesis methodologies from Bothrops genus venom.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , DNA Complementar/genética , Bothrops/genética , Peru , Relevância Clínica , Venenos de Crotalídeos/genética , Proteínas , RNA
4.
Biochim Biophys Acta Proteins Proteom ; 1871(6): 140930, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442518

RESUMO

Snake venoms have a complex mixture of compounds that are conserved across species and act synergistically, triggering severe local and systemic effects. Identification of the toxin classes that are most damaging to cell homeostasis would be a powerful approach to focus on the main activities that underpin envenomation. Here, we focus on the venom of Bothrops atrox, snake responsible for most of the accidents in Amazon region of South America. We identified the key cytotoxic toxin fractions from B. atrox venom and mapped their biochemical properties, protein composition and cell damage. Five fractions were obtained by mass exclusion chromatography and contained either a single class of enzymatic activity (i.e., L-amino acid oxidases or Hyaluronidases) or different activities co-distributed in two or more protein fractions (e.g., Metalloproteinases, Serine Proteases, or Phospholipases A2). Only three protein fractions reduced cell viability of primary human cells. Strikingly, such activity is accompanied by disruption of cell attachment to substratum and to neighbouring cells. Such strong perturbation of morphological cell features indicates likely defects in tissue integrity in vivo. Mass spectrometry identified the main classes of toxins that contribute to these phenotypes. We provide here a strategy for the selection of key cytotoxic proteins for targeted investigation of their mechanism of action and potential synergism during snakebite envenomation. Our data highlights putative toxins (or combinations of) that may be the focus of future therapeutic interference.


Assuntos
Bothrops , Mordeduras de Serpentes , Animais , Humanos , Antivenenos/análise , Antivenenos/metabolismo , Antivenenos/farmacologia , Bothrops/metabolismo , Mordeduras de Serpentes/terapia , Espectrometria de Massas , Metaloproteases/análise , Metaloproteases/química , Metaloproteases/metabolismo
5.
Toxicon ; 228: 107107, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011787

RESUMO

The spider's genus Loxosceles (also known as "brown spiders") is one of the few ones of medical importance in Brazil, being Loxosceles anomala a species of common occurrence in the Southeast region. This species is usually smaller in size than the other members of the Loxosceles group. A single human accident involving L. anomala was reported to date and the clinical picture shared similar characteristics with accidents caused by other Loxosceles species. Despite the potential relevance of L. anomalafor loxocelism in Minas Gerais state, its venom activity has never been characterized. In this work, we provide a preliminary characterization of L. anomala venom, considering its most relevant enzymatic activities and its venom immunorecognition by current therapeutic antivenoms. The results showed that L. anomala venom is immunorecognised by therapeutic antivenoms and by anti-phospholipase D antibodies. Its venom also shows enzymatic activities (sphingomyelinase activity, fibrinogenolytic) described for other Loxosceles venoms. This work contributes to a better knowledge on the venom content and activities of synanthropic Loxosceles species that have the potential of causing relevant human accidents.


Assuntos
Venenos de Aranha , Aranhas , Animais , Humanos , Antivenenos , Diester Fosfórico Hidrolases/toxicidade , Brasil
6.
Biochimie ; 211: 122-130, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36963559

RESUMO

Loxosceles spider envenomation results in dermonecrosis, principally due to phospholipases D (PLDs) present in the venom. These enzymes have a strongly conserved sequence, 273ATXXDNPW280, in the C-terminal region (SMD-tail) that make contact with ß-sheets of the TIM barrel, in which the amino acids Asp277 and Trp280 establish the energetically strongest contacts. The SMD-tail is conserved in PLDs from different species but absent in the non-toxic PLD ancestral glycerophosphodiester phosphodiesterases (GDPDs). This work aims to understand the role of the C-terminal region in the structural stability and/or function of phospholipases D. Through site-directed mutagenesis of the rLiD1 protein (recombinant Loxosceles intermedia dermonecrotic protein 1), we produced two mutants: rLiD1D277A and rLiD1W280A (both with sphingomyelinase activity), in which Asp277 and Trp280 were replaced by alanine. rLiD1D277A showed similar sphingomyelinase activity but at least 2 times more dermonecrotic activity than rLiD1 (wild-type protein). Conversely, while the rLiD1W280A displayed a slight increase in sphingomyelinase activity, its biological activity was similar or lower compared to rLiD1, potentially due to its decreased thermostability and formation of amyloid aggregates. In conclusion, these new findings provide evidence that SMD-tail mutants impact the structure and function of these proteins and point out that residues outside the active site can even increase the function of these enzymes.


Assuntos
Fosfolipase D , Venenos de Aranha , Aranhas , Animais , Fosfolipase D/genética , Fosfolipase D/química , Fosfolipase D/metabolismo , Domínio Catalítico , Esfingomielina Fosfodiesterase , Diester Fosfórico Hidrolases/genética , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Aranhas/genética , Venenos de Aranha/genética , Venenos de Aranha/química
7.
PLoS Negl Trop Dis ; 17(2): e0011069, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36757916

RESUMO

Opportunistic scorpion species can colonize urban environments, establishing high-density communities that enhance the chances of human accidents. This scenario has been taking place in Brazil, in which some Tityus species have taken city centers, causing an explosion in the number of scorpion envenoming cases. The characteristics of this scorpionism epidemic in Brazil is discussed in the present work. The number of Brazilian scorpion stings has surpassed 120,000 cases in 2017, and has been maintained above this number ever since, representing a more than 3-fold increase in 10 years, which was higher than the number of cases for most of the neglected tropical diseases in the country. The escalation in scorpionism cases is even higher in some regions of Brazil. Fortunately, the proportion of mild cases has also increased in the analyzed period, as well as the number of victims seeking for medical attention within the first hour after the accident. The species Tityus serrulatus, Tityus stigmurus, Tityus bahiensis, and Tityus obscurus are traditionally accountable for most of the scorpion accidents in different regions of Brazil, but other species deserve to be closely watched. Despite scorpionism being a notable health problem in Brazil, accident prevention and pest control regarding this venomous animal have not been properly addressed by the scientific community nor by policy makers. Therefore, this review also aims to point possible fields of research that could help to contain the aggravation of the current scorpionism landscape in Brazil.


Assuntos
Picadas de Escorpião , Venenos de Escorpião , Animais , Humanos , Picadas de Escorpião/epidemiologia , Brasil/epidemiologia , Escorpiões
8.
Toxicon ; 225: 107056, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804442

RESUMO

Micrurus surinamensis is a semi-aquatic coral snake found in primary forest region and can cause relevant human accidents. In this work we investigated the toxic and antigenic activities of the Peruvian Micrurus surinamensis venom (MsV). We found that MsV show hyaluronidase activity but lack LAAO and PLA2 enzymatic activities. Interestingly, MsV induce edematogenic responses but cannot cause nociceptive effects. Furthermore, MsV can reduce in vitro cell viability in MGSO-3 cell line derived from human breast cancer tissue. To evaluate its antigenic potential, rabbits were immunized with MsV, which proved to be immunogenic. ELISA, immunobloting and in vivo neutralization assays demonstrated that the specific rabbit anti-MsV antivenom is more efficient than the therapeutic Brazilian antivenom in recognizing and neutralizing the lethal activity of MsV. MsV differs in protein profile and biological activities from M. frontalis venom (MfV), used as control, which impairs its recognition and neutralization by Brazilian therapeutic anti-elapidic antivenom. We performed a SPOT immunoassay for the identification of B-cell linear epitopes in the main toxins described for MsV targeted by the elicited neutralizing antibodies previously produced. A membrane containing 15-mer peptides representing the sequences of five 3TFxs and five PLA2s was produced and probed with anti- MsV antibodies. Results revealed important regions in 3FTx toxins for venom neutralization. Identifying the main MsV components and its biological activities can be helpful in guiding the production of antivenoms and in the optimization of treatment for coral snake envenomation in Brazil.


Assuntos
Cobras Corais , Toxinas Biológicas , Animais , Coelhos , Humanos , Antivenenos/farmacologia , Peru , Venenos Elapídicos/química , Toxinas Biológicas/química , Elapidae
9.
Toxicon ; 223: 107022, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621682

RESUMO

Previous knowledge about the taxonomic distribution of venomous snake species is very useful for epidemiological aspects of ophidism. Here, we sought to develop an assay for the differential identification of clinically relevant snakes in Peru: Bothrops atrox, Lachesis muta, and Crotalus durissus using a multiplex loop-mediated isothermal amplification (mLAMP) assay. For this, DNA was extracted from the shed snake skins and the mitochondrial genes Cytb, COI, and 12S rRNA were amplified and further sequenced, for the design of mLAMP reaction primers. For each snake species the forward and reverse primers, internal forward and reverse primers, and the loop primers were obtained, bearing the latter different fluorophores for product identification. Finally, the reaction was standardized in the presence of all primer sets, and an optimal amount of low molecular weight polyethyleneimine. The precipitated products were observed in a UV light transilluminator, finding a differential fluorescence according to the DNA used, with a detection limit to the naked eye in the range of 0.2-25 ng of DNA, within 30 min. This study is the first report on the use of mLAMP technology for the identification of venomous snakes.


Assuntos
Bothrops , Crotalinae , Animais , Peru , Técnicas de Amplificação de Ácido Nucleico , DNA
10.
Int J Biol Macromol ; 225: 1246-1266, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427608

RESUMO

Tityus cisandinus, a neglected medically important scorpion in Ecuadorian and Peruvian Amazonia, belongs to a complex of species related to the eastern Amazon endemic Tityus obscurus, spanning a distribution of ca. 4000 km. Despite high morbidity and mortality rates, no effective scorpion antivenom is currently available in the Amazon region. Knowledge of the structural/functional relationships between T. cisandinus venom components and those from related Amazonian species is crucial for designing region-specific therapeutic antivenoms. In this work, we carried out the first venom gland transcriptomic study of an Amazonian scorpion outside Brazil, T. cisandinus. We also fingerprinted its total venom through MALDI-TOF MS, which supported our transcriptomic findings. We identified and calculated the expression level of 94 components: 60 toxins, 25 metalloproteases, five disulfide isomerases, three amidating enzymes, one hyaluronidase, and also uncovered transcripts encoding novel lipolytic beta subunits produced by New World buthid scorpions. This study demonstrates the high similarity between T. cisandinus and T. obscurus venoms, reinforcing the existence of a neglected complex of genetically and toxinologically related Amazonian scorpions of medical importance. Finally, we demonstrated the low recognition of currently available therapeutic sera against T. cisandinus and T. obscurus venoms, and concluded that these should be improved to protect against envenomation by Amazonian Tityus spp.


Assuntos
Venenos de Escorpião , Transcriptoma , Animais , Transcriptoma/genética , Escorpiões/genética , Escorpiões/metabolismo , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Perfilação da Expressão Gênica , Antivenenos/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-35932519

RESUMO

Accidents involving spiders from the genus Loxosceles cause medical emergencies in several countries of South America. The species Loxosceles laeta is ubiquitously present in Peru and is responsible for severe accidents in this country. To further characterize L. laeta venom components and to unveil possible variations in the Peruvian population, we provide an overview of the toxins-related transcripts present in the venom gland of Peruvian L. laeta. A dataset from a cDNA library previously sequenced by MiSeq sequencer (Illumina) was re-analyzed and the obtained data was compared with available sequences from Loxosceles toxins. Phospholipase-D represent the majority (69,28 %) of the transcripts related to venom toxins, followed by metalloproteases (20,72 %), sicaritoxins (6,03 %), serine-proteases (2,28 %), hyaluronidases (1,80 %) and Translationally Controlled Tumor Protein (TCTP) (0,56 %). New sequences of phospholipases D,sicaritoxins, hyaluronidase, TCTP and serine proteinases were described. Differences between the here-described toxin sequences and others, previously identified in venom glands from other spiders, were visualized upon sequence alignments. In addition, an in vitro hyaluronidase activity assay was also performed to complement comparisons between Peruvian and Brazilian L. laeta venom enzymatic activities, revealing a superior activity in the venom from Brazilian specimens. These new data provide a molecular basis that can help to explain the difference in toxicity among L. laeta venoms from different countries in South America.


Assuntos
Hialuronoglucosaminidase , Venenos de Aranha , Animais , Biblioteca Gênica , Hialuronoglucosaminidase/genética , Peru , Alinhamento de Sequência , Venenos de Aranha/genética
12.
Front Vet Sci ; 9: 852917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711800

RESUMO

Loxosceles spp. (brown spiders) bites are responsible for the development of a syndrome consisting mainly of dermonecrotic lesions, and also systemic effects. Rabbits are one of the main experimental models used for better understanding the systemic and local effects of Loxosceles venom. The aim of this study is to evaluate the toxic and protective effects of rabbits immunized with Loxosceles spp. venom. Male New Zealand rabbits were allocated as a control group (CG; n = 5) that received adjuvant (Montanide) and phosphate-buffer saline (PBS), or as venom group (VG; n = 5) that received 21 µg of Loxosceles venom using Montanide as adjuvant. After five immunization cycles, a trial with 7 µg of Loxosceles intermedia (L. intermedia) venom was performed, and dermonecrotic lesions were measured. The rabbits were then euthanized, and their organs were collected for histopathology analysis. Rabbits that had undergone Loxosceles venom immunization protocol showed minor clinical disturbances during the experimental period. The used immunization protocol protected the rabbits against the toxic effect of the Loxosceles venom because they showed minor clinical disturbances during the experimental period.

13.
Toxicon ; 215: 1-5, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35660625

RESUMO

Loxoscelism is a serious public health problem in Peru, with approximately 2500 accidents reported per year. To envision alternatives to cope with this health problem, the neutralizing humoral immune response against the lethal effects of Peruvian spider Loxosceles laeta venom was evaluated in a mouse model by immunization with a non-toxic multiepitopic protein (rMEPLox). This immunogen contains epitopes from an astacin-like metalloprotease, a hyaluronidase and a sphingomyelinase-D from Loxosceles intermedia and from SMase-I from L. laeta venoms. In vivo protection assays showed that five out of six mice immunized with rMEPLox (after six injections) resisted to 1.4 LD50 of L. laeta venom, whereas only two animals from a control group survived. The present results indicates that this multiepitopic protein can be a promising candidate for anti-loxoscelic antivenom production and experimental vaccination approaches.


Assuntos
Epitopos/imunologia , Picada de Aranha , Venenos de Aranha , Aranhas , Animais , Imunização , Camundongos , Peru , Diester Fosfórico Hidrolases/metabolismo , Aranhas/metabolismo , Vacinação
14.
Int J Biol Macromol ; 214: 530-541, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35753516

RESUMO

Accidents with snakes from the genus Bothrops represent ~90 % of all snakebites in Brazil. Monoclonal antibodies (mAbs) targeting venom components can be important assets for treating envenoming syndromes, for developing diagnostic tests and for research purposes. Therefore, in this study, we aimed to generate murine mAbs against the antigenic mixture of Bothropic venoms traditionally used as immunogen to produce Bothropic antivenoms in Brazil. ELISA showed that one of the produced mAbs recognizes B. alternatus and B. neuwiedi venoms (mAb anti-Ba/Bn) specifically and Western Blot revealed that this mAb binds to a single protein band of molecular mass of ≈50 kDa. MAb anti-Ba/Bn inhibited the coagulant activity but was unable to neutralize hemorrhagic and phospholipase A2 activities caused by the B. neuwiedi venom. MAb anti-Ba/Bn was immobilized to Sepharose beads and used for immunoaffinity chromatography of B. neuwiedi venom. Proteolytic activity assays indicated that the immunoaffinity-purified fraction (BnF-Bothrops neuwiedi fraction) has a serine protease thrombin-like profile, which was supported by coagulability assays in mice. Bottom-up proteomic analysis confirmed the prevalence of serine proteases in BnF using label-free quantification. In conclusion, this work characterized a mAb with neutralizing properties against B. neuwiedi coagulant activity and demonstrates that immunoaffinity chromatography using mAbs can be a useful technique for purification of bioactive toxic proteins from Bothrops spp. snake venoms.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Anticorpos Monoclonais , Venenos de Crotalídeos/química , Camundongos , Proteômica , Serina Proteases , Venenos de Serpentes , Trombina
15.
Toxins (Basel) ; 14(5)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622586

RESUMO

Bites of brown spiders (Loxosceles spp.) are responsible for dermonecrotic lesions and potentially systemic envenoming that can lead to death. The only effective therapy is the use of the antivenom, usually produced in horses. However, little is known about the consequences of the systematic use of the Loxosceles venom and adjuvants and of the bleedings on antivenom-producing horses. Thus, the aim of this study was to evaluate the clinical changes in horses in their first immunization protocol for Loxosceles antivenom production. Eleven healthy horses, never immunized, were evaluated in three different periods: T0 (before immunization); T1 (after their first venom immunization); and T2 (after their first bleeding). Horses were clinically evaluated, sampled for blood, and underwent electrocardiographic (ECG) recordings. Several suppurated subcutaneous abscesses occurred due to the use of Freund's adjuvants and thrombophlebitis due to systematic venipunctures for the bleeding procedures. ECG showed arrhythmias in few horses in T2, such as an increase in T and R waves. In summary, the immunization protocol impacted on horses' health, especially after bleeding for antivenom procurement.


Assuntos
Venenos de Aranha , Aranhas , Animais , Antivenenos/farmacologia , Cavalos , Imunização/veterinária , Diester Fosfórico Hidrolases
16.
ACS Appl Nano Mater ; 5(1): 642-653, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35098045

RESUMO

The COVID-19 pandemic, caused by the fast transmission and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently considered a serious health problem, requiring an effective strategy to contain SARS-CoV-2 dissemination. For this purpose, epitopes of the SARS-CoV-2 spike (S) and sucleocapsid (N) proteins were identified by bioinformatics tools, and peptides that mimic these epitopes were chemically synthesized and then conjugated to superparamagnetic nanoparticles (SPMNPs). Three peptides from S protein and three from N protein were used as antigens in a conventional enzyme-linked immunosorbent assay (ELISA) against serum samples from COVID-19-positive patients, or from healthy donors, collected before the pandemic. Three peptides were effective as antigens in conventional peptide-based ELISA, achieving 100% sensitivity and specificity, with high accuracy. The best-performing peptides, p2pS, p1pN, and p3pN, were associated with superparamagnetic nanoparticles (SPMNPs) and were used to perform nanomagnetic peptide-based ELISA. The p2pS-SPMNP conjugate presented 100% sensitivity and specificity and excellent accuracy (area under the curve (AUC) = 1.0). However, p1pN and p3pN peptides, when conjugated to SPMNPs, did not preserve the capacity to differentiate positive sera from negative sera in all tested samples, yet both presented sensitivity and specificity above 80% and high accuracy, AUC > 0.9. We obtained three peptides as advantageous antigens for serodiagnosis. These peptides, especially p2pS, showed promising results in a nanomagnetic peptide-based ELISA and may be suitable as a precoated antigen for commercial purposes, which would accelerate the diagnosis process.

17.
Toxicon ; 207: 31-42, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34968566

RESUMO

The Peruvian rattlesnake Crotalus durissus is a venomous species that is restricted to the Peruvian Departments of Puno and Madre de Dios. Although clinically meaningful in this region, Crotalus durissus venom composition remains largely elusive. In this sense, this work aimed to provide a primary description of Peruvian C. durissus venom (PCdV). The enzymatic activities (SVMP, SVSP, LAAO, Hyaluronidase and PLA2) of PCdV were analyzed and compared to Brazilian Crotalus durissus terrificus venom (BCdtV). PCdV showed higher PLA2 activity when compared to the Brazilian venom. PCdV also showed cytotoxicity in VERO cells. For proteomic analysis, PCdV proteins were separated by HPLC, followed by SDS-PAGE. Gel bands were excised and tryptic digested for MALDI-TOF/TOF identification. Approximately 21 proteins were identified, belonging to 7 families. Phospholipases A2 (PLA2, 66.63%) were the most abundant proteins of the venom, followed by snake venom serine proteinases (SVSPs, 13.37%), C-type lectins (Snaclec, 8.98%) and snake venom metalloproteinases (SVMPs, 7.13%), crotamine (2.98%) and phosphodiesterase (PDE, 0.87%). Moreover, antivenom recognition assays indicated that both Brazilian and Peruvian antivenoms recognize PCdV, indicating the presence of antigenically related proteins in crotalic venoms. The results reported here, may impact in the venom selection for the production of effective Pan-American crotalic antivenom.


Assuntos
Venenos de Crotalídeos , Crotalus , Animais , Antivenenos , Chlorocebus aethiops , Venenos de Crotalídeos/toxicidade , Humanos , Peru , Proteômica , Células Vero
18.
Lancet Reg Health Am ; 15: 100347, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36778067

RESUMO

Background: Malaria is one of the biggest impediments to global progress. In Peru, it is still a major public health problem. Measures of health and economic burden due to malaria are relevant considerations for the assessment of current policies. Methods: We used estimates from the Global Burden of Diseases Study 2019 for malaria in Peru, grouped by gender and age, from 1990 to 2019. Results are presented as absolute numbers and age-standardized rates with 95% uncertainty intervals (UI). We collected economic data from the World Bank and The National Institute of Statistics and Informatics of Peru and Loreto to calculate the economic burden of productivity loss (EBPL) using the human capital approach. Economic values were presented in constant dollars, soles, and percentages. Findings: Rates of deaths, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life years (DALYs), as well as the EBPL, were drastically reduced from 1990 to 2019. DALYs had a greater percentage of YLDs in 2019 than in 1990. DALYs rates showed no preference between sexes, but the "< 1 year" age group had the highest DALYs values over the study period. We found that the EBPL due to malaria for Loreto was considerably higher than Peru's in terms of GDP percentage. Interpretation: Our study shows that the fight against malaria in Peru reduced remarkably the impact of the disease since 1990; however, during the last decade the estimates were stable or even increased. Our results help to measure the malaria impact on the health status of the Peruvian population as well as the economic pressure that it exerts, constituting remarkable tools for policymaking aimed at reducing the burden of this disease. Strengthening the malaria elimination program is important to achieve the elimination of the disease in the coming years. Funding: This study was supported by the Universidad Nacional Toribio Rodríguez de Mendoza and FONDECYT: Contrato Nº 09-2019-FONDECYT-BMINC.INV and FONDECYT-BM, Perú (Program INCORPORACIÓN DE INVESTIGADORES E038-2019-01, Registry Number: 64007).

19.
Int J Biol Macromol ; 187: 66-75, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34246677

RESUMO

Loxoscelism is the most dangerous araneism form in Brazil and antivenom therapy is the recommended treatment. Antivenom is produced by horse immunization with Loxosceles spider venom, which is toxic for the producer animal. Moreover, due to the high amount of venom required for horse hyperimmunization, new strategies for antigens obtention have been proposed. In this sense, our research group has previously produced a non-toxic recombinant multiepitopic protein derived from Loxosceles toxins (rMEPLox). rMEPLox was a successful immunogen, being able to induce the production of neutralizing antibodies, which could be used in the Loxoscelism treatment. However, rMEPLox obtention procedure requires optimization, as its production needs to be scaled up to suit antivenom manufacture. Therefore, an effective protocol development for rMEPlox production would be advantageous. To achieve this objective, we evaluated the influence of different cultivation conditions for rMEPLox optimum expression. The optimum conditions to obtain large amounts of rMEPlox were defined as the use of C43(DE3)pLysS as a host strain, 2xTY medium, 0.6 mM IPTG, biomass pre induction of OD600nm = 0.4 and incubation at 30 °C for 16 h. Following the optimized protocol, 39.84 mg/L of soluble rMEPLox was obtained and tested as immunogen. The results show that the obtained rMEPLox preserved the previously described immunogenicity, and it was able to generate antibodies that recognize different epitopes of the main Loxosceles venom toxins, which makes it a promising candidate for the antivenom production for loxoscelism treatment.


Assuntos
Escherichia coli , Expressão Gênica , Aranhas/genética , Animais , Antivenenos/biossíntese , Antivenenos/genética , Antivenenos/imunologia , Antivenenos/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Camundongos Endogâmicos BALB C , Diester Fosfórico Hidrolases/biossíntese , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/imunologia , Diester Fosfórico Hidrolases/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Venenos de Aranha/biossíntese , Venenos de Aranha/genética , Venenos de Aranha/imunologia , Venenos de Aranha/isolamento & purificação
20.
J Zoo Wildl Med ; 52(2): 853-857, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34130436

RESUMO

Cardiac disease is of importance in captive chimpanzee (Pan troglodytes) health. Here we report an eosinophilic and necrotizing myocarditis in a 17-y-old chimpanzee with no previous history of cardiac disease that progressed to death within 48 h. Toxic and infectious causes were ruled out. The chimpanzee had eosinophilia at different occasions in previous years. The animal had a severe, diffuse, and acute monophasic necrotizing myocarditis, with a moderate lymphoplasmacytic infiltrate that was rich in eosinophils. Ante- and postmortem investigations are compatible with an unusual eosinophilic myocarditis with clinical evolution and morphology comparable with human eosinophilic myocarditis secondary to hypereosinophilic syndrome.


Assuntos
Doenças dos Símios Antropoides/patologia , Eosinofilia/veterinária , Miocardite/veterinária , Miocárdio/patologia , Pan troglodytes , Animais , Eosinofilia/patologia , Evolução Fatal , Masculino , Miocardite/patologia , Necrose/patologia , Necrose/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...