Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 32(4): 343-5, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17356647

RESUMO

On the basis of numerical simulations, we explain the formation of the stable bound soliton pairs that were experimentally reported in a high-power mode-locked ytterbium fiber laser [Opt. Express 14, 6075 (2006)], in a regime where wave-breaking-free operation is expected. A fully vectorial model allows one to rigorously reproduce the nonmonotonic nature for the nonlinear polarization effect that generally limits the power scalability of a single-pulse self-similar regime. Simulations show that a self-similar regime is not fully obtained, although positive linear chirps and parabolic spectra are always reported. As a consequence, nonvanishing pulse tails allow distant stable binding of highly-chirped pulses.

2.
Opt Express ; 14(13): 6075-83, 2006 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19516779

RESUMO

We report the observation of self-similar propagation of bound-state pulses in an ytterbium-doped double-clad fiber laser. A bound state of two positively chirped parabolic pulses with 5.4 ps duration separated by 14.9 ps is obtained, with 1.7 nJ of energy per pulse. These pulses are extra-cavity compressed to 100 fs. For higher pumping power and a different setting of the intra-cavity polarization controllers, the laser generates a bound state of three chirped parabolic pulses with different time separations and more than 1.5 nJ energy per pulse. Perturbation of this bound state by decreasing pump power results in the generation of a single pulse and a two-pulse bound state both structures traveling at the same velocity along the cavity. A possible explanation of the zero relative speed by a particular phase relation of the bound states is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA